JBIC Journal of Biological Inorganic Chemistry

, Volume 10, Issue 8, pp 935–945 | Cite as

Oxyleghemoglobin scavenges nitrogen monoxide and peroxynitrite: a possible role in functioning nodules?

Original Article

Abstract

It has been demonstrated that the NO produced by nitric oxide synthase or by the reduction of nitrite by nitrate reductase plays an important role in plants’ defense against microbial pathogens. The detection of nitrosyl Lb in nodules strongly suggests that NO is also formed in functional nodules. Moreover, NO may react with superoxide (which has been shown to be produced in nodules by various processes), leading to the formation of peroxynitrite. We have determined the second-order rate constants of the reactions of soybean oxyleghemoglobin with nitrogen monoxide and peroxynitrite. At pH 7.3 and 20 °C, the values are on the order of 108 and 104 M−1 s−1, respectively. In the presence of physiological amounts of CO2 (1.2 mM), the second-order rate constant of the reaction of oxyleghemoglobin peroxynitrite is even larger (105 M−1 s−1). The results presented here clearly show that oxyleghemoglobin is able to scavenge any NO and peroxynitrite formed in functional nodules. This may help to stop NO triggering a plant defense reaction.

Keywords

Leghemoglobin Nitric oxide Peroxynitrite Hemoglobin Kinetics Mechanism 

Abbreviation

EPR

Electron paramagnetic resonance

Hb

Human hemoglobin

Lb

Leghemoglobin

LbFeO2 (oxyLb)

Oxyleghemoglobin

LbFeIV=O (ferrylLb)

Oxoiron(IV)-leghemoglobin

MetLb

Iron(III)leghemoglobin

Mb

Myoglobin

NOS

Nitric oxide synthase

References

  1. 1.
    Kubo H (1939) Acta Phytochim (Tokyo) 11:195–200Google Scholar
  2. 2.
    Appleby CA, Bogusz D, Dennis ES, Peacock WJ (1988) Plant Cell Environ 11:359–367CrossRefGoogle Scholar
  3. 3.
    Dordas C, Rivoal J, Hill RD (2003) Ann Bot 91:173–178CrossRefPubMedGoogle Scholar
  4. 4.
    Davies MJ, Mathieu C, Puppo A (1999) Adv Inorg Chem 46:495–542Google Scholar
  5. 5.
    Hunt PW, Watts RA, Trevaskis B, Llewellyn DJ, Burnell J, Dennis ES, Peacock WJ (2001) Plant Mol Biol 47:677–692CrossRefPubMedGoogle Scholar
  6. 6.
    Watts RA, Hunt PW, Hvitved AN, Hargrove MS, Peacock WJ, Dennis ES (2001) Proc Natl Acad Sci USA 98:10119–10124CrossRefPubMedGoogle Scholar
  7. 7.
    Wittenberg JB, Bolognesi M, Wittenberg BA, Guertin M (2002) J Biol Chem 277:871–874CrossRefPubMedGoogle Scholar
  8. 8.
    Moncada S, Palmer RMJ, Higgs EA (1991) Pharmacol Rev 43:109–142PubMedGoogle Scholar
  9. 9.
    Alderton WK, Cooper CE, Knowles RG (2001) Biochem J 357:593–615CrossRefPubMedGoogle Scholar
  10. 10.
    Beligni MV, Lamattina L (2001) Plant Cell Environ 24:267–278CrossRefGoogle Scholar
  11. 11.
    Wendehenne D, Durner J, Klessig DF (2004) Curr Opin Plant Biol 7:449–455CrossRefPubMedGoogle Scholar
  12. 12.
    Neill S, Desikan R, Hancock JT (2003) New Phytol 159:11–35CrossRefGoogle Scholar
  13. 13.
    Butt YK-C, Lum JH-K, Lo SC-L (2003) Planta 216:762–771PubMedGoogle Scholar
  14. 14.
    Yamasaki H, Sakihama Y, Takahashi S (1999) Trends Plant Sci 4:128–129CrossRefPubMedGoogle Scholar
  15. 15.
    Desikan R, Griffiths R, Hancock J, Neill S (2002) Proc Natl Acad Sci USA 99:16314–16318CrossRefPubMedGoogle Scholar
  16. 16.
    Meyer C, Lea US, Provan F, Kaiser WM, Lillo C (2005) Photosynth Res 83:181–189CrossRefPubMedGoogle Scholar
  17. 17.
    Kaiser WM, Weiner H, Kandlbinder A, Tsai C-B, Rockel P, Sonoda M, Planchet E (2002) J Exp Bot 53:875–882CrossRefPubMedGoogle Scholar
  18. 18.
    Romero-Puertas MC, Perazzolli M, Zago ED, Delledonne M (2004) Cell Microbiol 6:795–803CrossRefPubMedGoogle Scholar
  19. 19.
    Durner J, Wendehenne D, Klessig DF (1998) Proc Natl Acad Sci USA 95:10328–10333CrossRefPubMedGoogle Scholar
  20. 20.
    Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nature 394:585–588CrossRefPubMedGoogle Scholar
  21. 21.
    Guo F-Q, Okamoto M, Crawford NM (2003) Science 302:100–103CrossRefPubMedGoogle Scholar
  22. 22.
    Herold S (2003) C R Biol 326:533–541PubMedCrossRefGoogle Scholar
  23. 23.
    Poole RK (2005) Biochem Soc Trans 33:176–180CrossRefPubMedGoogle Scholar
  24. 24.
    Dordas C, Hasinoff BB, Igamberdiev AU, Manac’h N, Rivoal J, Hill RD (2003) Plant J 35:763–770CrossRefPubMedGoogle Scholar
  25. 25.
    Igamberdiev AU, Seregelyes CS, Manac’h N, Hill RD (2004) Planta 219:95–102CrossRefPubMedGoogle Scholar
  26. 26.
    Zottini M, Formentin E, Scattolin M, Carimi F, Lo Schiavo F, Terzi M (2002) FEBS Lett 515:75–78CrossRefPubMedGoogle Scholar
  27. 27.
    Dordas C, Hasinoff BB, Rivoal J, Hill RD (2004) Planta 219:66–72CrossRefPubMedGoogle Scholar
  28. 28.
    Cueto M, Hernandez-Perera O, Martin R, Bentura ML, Rodrigo J, Lamas S, Golvano MP (1996) FEBS Lett 398:159–164CrossRefPubMedGoogle Scholar
  29. 29.
    Meyer J (1981) Arch Biochem Biophys 210:246–256CrossRefPubMedGoogle Scholar
  30. 30.
    Mathieu C, Moreau S, Frendo P, Puppo A, Davies MJ (1998) Free Radic Biol Med 24:1242–1249CrossRefPubMedGoogle Scholar
  31. 31.
    Maskall CS, Gibson JF, Dart PJ (1977) Biochem J 167:435–445PubMedGoogle Scholar
  32. 32.
    Hérouart D, Baudouin E, Frendo P, Harrison J, Santos R, Jamet A, Van de Sype G, Touati D, Puppo A (2002) Plant Physiol Biochem 40:619–624CrossRefGoogle Scholar
  33. 33.
    Dalton DA, Post CJ, Langeberg L (1991) Plant Physiol 96:812–818PubMedCrossRefGoogle Scholar
  34. 34.
    Puppo A, Rigaud J, Job D (1981) Plant Sci Lett 22:353–360CrossRefGoogle Scholar
  35. 35.
    Nauser T, Koppenol WH (2002) J Phys Chem A 106:4084–4086CrossRefGoogle Scholar
  36. 36.
    Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A (2001) Free Radic Biol Med 30:463–488CrossRefPubMedGoogle Scholar
  37. 37.
    Herold S, Shivashankar K (2003) Biochemistry 42:14036–14046CrossRefPubMedGoogle Scholar
  38. 38.
    Herold S, Shivashankar K, Mehl M (2002) Biochemistry 41:13460–13472CrossRefPubMedGoogle Scholar
  39. 39.
    Exner M, Herold S (2000) Chem Res Toxicol 13:287–293CrossRefPubMedGoogle Scholar
  40. 40.
    Herold S, Exner M, Boccini F (2003) Chem Res Toxicol 16:390–402CrossRefPubMedGoogle Scholar
  41. 41.
    Herold S, Röck G (2003) J Biol Chem 278:6623–6634CrossRefPubMedGoogle Scholar
  42. 42.
    Koppenol WH, Kissner R, Beckman JS (1996) Methods Enzymol 269:296–302PubMedGoogle Scholar
  43. 43.
    Bohle DS, Glassbrenner PA, Hansert B (1996) Methods Enzymol 269:302–311PubMedGoogle Scholar
  44. 44.
    Rigaud J, Puppo A (1977) Biochim Biophys Acta 497:702–706PubMedGoogle Scholar
  45. 45.
    Herold S, Puppo A (2005) J Biol Inorg Chem (this issue)Google Scholar
  46. 46.
    Harned HS, Bonner FT (1945) J Am Chem Soc 67:1026–1031CrossRefGoogle Scholar
  47. 47.
    Puppo A, Rigaud J (1987) Electrophoresis 8:212–214CrossRefGoogle Scholar
  48. 48.
    Aviram I, Wittenberg A, Wittenberg JB (1978) J Biol Chem 253:5685–5689PubMedGoogle Scholar
  49. 49.
    Herold S, Exner M, Nauser T (2001) Biochemistry 40:3385–3395CrossRefPubMedGoogle Scholar
  50. 50.
    Olson JS, Foley EW, Rogge C, Tsai AL, Doyle ML, Lemon DD (2004) Free Radic Biol Med 36:685–697CrossRefPubMedGoogle Scholar
  51. 51.
    Boccini F, Herold S (2004) Biochemistry 43:16393–16404CrossRefPubMedGoogle Scholar
  52. 52.
    Everse J, Hsia N (1997) Free Radic Biol Med 22:1075–1099CrossRefPubMedGoogle Scholar
  53. 53.
    Pietraforte D, Salzano AM, Scorza G, Marino G, Minetti M (2001) Biochemistry 40:15300–15309CrossRefPubMedGoogle Scholar
  54. 54.
    Herold S, Kalinga S, Matsui T, Watanabe Y (2004) J Am Chem Soc 126:6945–6955CrossRefPubMedGoogle Scholar
  55. 55.
    Gladwin MT, Crawford JH, Patel RP (2004) Free Radic Biol Med 36:707–717CrossRefPubMedGoogle Scholar
  56. 56.
    Brunori M (2001) Trends Biochem Sci 26:209–210PubMedCrossRefGoogle Scholar
  57. 57.
    Santos R, Hérouart D, Sigaud S, Touati D, Puppo A (2001) Mol Plant–Microbe Interact 14:86–89PubMedCrossRefGoogle Scholar
  58. 58.
    Eich RF, Li T, Lemon DD, Doherty DH, Curry SR, Aitken JF, Mathews AJ, Johnson KA, Smith RD, Phillips GN Jr, Olson JS (1996) Biochemistry 35:6976–6983CrossRefPubMedGoogle Scholar
  59. 59.
    Scott EE, Gibson QH, Olson JS (2001) J Biol Chem 276:5177–5188CrossRefPubMedGoogle Scholar
  60. 60.
    Quillin ML, Li T, Olson JS, Phillips GN Jr, Dou Y, Ikeda-Saito M, Regan R, Carlson M, Gibson QH, Li H, Elber R (1995) J Mol Biol 245:416–436CrossRefPubMedGoogle Scholar
  61. 61.
    Rohlfs RJ, Olson JS, Gibson QH (1988) J Biol Chem 263:1803–1813PubMedGoogle Scholar
  62. 62.
    Olson JS, Rohlfs RJ, Gibson QH (1987) J Biol Chem 262:12930–12938PubMedGoogle Scholar
  63. 63.
    Hargrove MS, Barry JK, Brucker EA, Berry MB, Phillips GN Jr, Olson JS, Arredondo-Peter R, Dean JM, Klucas RV, Sarath G (1997) J Mol Biol 266:1032–1042CrossRefPubMedGoogle Scholar
  64. 64.
    Ollis DL, Appleby CA, Colman PM, Cutten AE, Guss JM, Venkatappa MP, Freeman HC (1983) Aust J Chem 36:451–468CrossRefGoogle Scholar
  65. 65.
    Lee HC, Wittenberg JB, Peisach J (1993) Biochemistry 32:11500–11506CrossRefPubMedGoogle Scholar
  66. 66.
    Herold S (1999) FEBS Lett 443:81–84CrossRefPubMedGoogle Scholar
  67. 67.
    Becana M, Klucas RV (1991) Plant Physiol 98:1217–1221Google Scholar
  68. 68.
    Downie JA (2005) Curr Biol 15:R196–R198CrossRefPubMedGoogle Scholar
  69. 69.
    Hunt S, Gaito ST, Layzell DB (1988) Planta 173:128–141CrossRefGoogle Scholar
  70. 70.
    Lee K-K, Shearman LL, Erickson BK, Klucas RV (1995) Plant Physiol 109:261–267PubMedGoogle Scholar
  71. 71.
    Herold S, Matsui T, Watanabe Y (2001) J Am Chem Soc 123:4085–4086CrossRefPubMedGoogle Scholar
  72. 72.
    Kundu S, Hargrove MS (2003) Proteins 50:239–248Google Scholar
  73. 73.
    Moreau S, Davies MJ, Puppo A (1995) Biochim Biophys Acta 1251:17–22PubMedGoogle Scholar
  74. 74.
    Ji L, Becana M, Sarath G, Shearman L, Klucas RV (1994) Plant Physiol 106:203–209PubMedGoogle Scholar

Copyright information

© SBIC 2005

Authors and Affiliations

  1. 1.Laboratorium für Anorganische ChemieEidgenössische Technische HochschuleZürichSwitzerland
  2. 2.UMR CNRS-UNSA-INRA IPMSVSophia-Antipolis CedexFrance

Personalised recommendations