Orally active antioxidative copper(II) aspirinate: synthesis, structure characterization, superoxide scavenging activity, and in vitro and in vivo antioxidative evaluations

  • T. Fujimori
  • S. Yamada
  • H. Yasui
  • H. Sakurai
  • Y. In
  • T. Ishida
Original Article


Ever since it was proposed that reactive oxygen species (ROS) are involved in the pathogeneses of various diseases, superoxide dismutase (SOD)-mimetic complexes have been intensively studied. We prepared copper(II) aspirinate [Cu2(asp)4] from Cu(II) and aspirin, which has been in use for many years as an antipyretic, an analgesic, and an anti-inflammatory agent. However, Cu2(asp)4 has been found to have additional activities, including anti-inflammatory, antiulcer, anti-ischemic/reperfusion agent, anticancer, antimutagenic, and antimicrobial activities. The activity of copper salicylate [Cu(sal)2] was also compared with that of Cu2(asp)4. The structure of the Cu2(asp)4 was determined using X-ray structure analysis. Its SOD-mimetic activity was determined using cytochrome c, electron spin resonance (ESR) spectroscopy, and ESR spin trap methods. The activity of Cu2(asp)4 was slightly greater than CuSO4 and copper acetate [Cu(ace)2] and slightly less than that of Cu(sal)2. The in vitro antioxidant activity, evaluated in human epithelial or transformed neoplastic keratinocyte cells, HaCaT, and normal dermal fibroblasts in terms of cell survival following ultraviolet B (UVB) irradiation, was significantly increased in the presence of Cu2(asp)4, Cu(sal)2, and CuSO4. Further, ROS generation following UVA irradiation in the skin of hairless mice following oral treatment with Cu2(asp)4 for three consecutive days was significantly suppressed compared to the vehicle- or Cu(ace)2-treated mice. On the basis of these results, Cu2(asp)4 was observed to be a potent antioxidative compound possessing antioxidative activity in biological systems. In conclusion, Cu2(asp)4 is a potent antioxidative agent that may be useful for future treatment of diseases resulting from ROS.


Copper aspirinate Copper salicylate Copper acetate Copper sulfate HaCaT cell Fibroblasts Reactive oxygen species Skin 



We express our gratitude to Dr. H. Masaki, Mrs. M. Obayashi, and Ms. S. Yamada of the Cosmos Technical Center, Japan for their kind help and advice during the present study.


  1. 1.
    Towyz RM (2004) Hypertention 44(3):248–252CrossRefGoogle Scholar
  2. 2.
    Petkau A (1986) Cancer Treat Rev 13:17–44CrossRefPubMedGoogle Scholar
  3. 3.
    Mosaad AMA, Mohammad ME, Mohammad E, Mohsen R, Salah N (2003) Clin Chim Acta 337(1–2):23–33CrossRefPubMedGoogle Scholar
  4. 4.
    Sorenson JRJ (1976) J Med Chem 19:135–148CrossRefPubMedGoogle Scholar
  5. 5.
    Weser U, Richter C, Wendel A, Younes M (1978) Bioinorg Chem 8:201–213CrossRefPubMedGoogle Scholar
  6. 6.
    Ohtsu H, Shimazaki Y, Odani A, Yamauchi O, Mori W, Itoh S, Fukuzumi S (2000) J Am Chem Soc 122:5733–5741CrossRefGoogle Scholar
  7. 7.
    Cejudo-Marin R, Alzuet G, Ferrer S, Borras J, Castineiras A, Monzani E, Casella L (2004) Inorg Chem 43:6805–6814CrossRefPubMedGoogle Scholar
  8. 8.
    Sorenson JRJ (1989) Prog Med Chem 26:437–568PubMedGoogle Scholar
  9. 9.
    Sorenson JRJ (1995) In: Berthon G (eds) Handbook of metal-ligand interactions in biological fluids: bioinorganic medicine, vol 2. Marcel Dekker, New York, pp 1128–1139Google Scholar
  10. 10.
    Sorenson JRJ (2002) Curr Med Chem 9:1867–1890Google Scholar
  11. 11.
    Fisher AEO, Grace L, Declan PN, (2005) Biochem Biophys Res Commun 329:930–933CrossRefPubMedGoogle Scholar
  12. 12.
    Itami C, Matsunaga H, Sawada T, Sakurai H, Kimura Y (1993) Biochem Biophys Res Commun 197:536–541CrossRefPubMedGoogle Scholar
  13. 13.
    Yamato K, Miyahara I, Ichimura A, Hirotsu K, Kojima Y, Sakurai H, Shiomi D, Sato K, Takui T (1999) Chem Lett 295–296Google Scholar
  14. 14.
    Jitsukawa K, Harata M, Arii H, Sakurai H, Masuda H (2001) Inorg Chim Acta 324:108–116CrossRefGoogle Scholar
  15. 15.
    Lippard SJ, Burger RA, Ugurbil K, Pantoliano WM, Valentine SJ (1977) Biochemistry 16:1136–1141CrossRefPubMedGoogle Scholar
  16. 16.
    Shen Z, Chen P, Li L, Chen P, Liu W (2004) Acta Pharmacol Sin 25:576–580PubMedGoogle Scholar
  17. 17.
    Tohgi H, Konno S, Tamura K, Kimura B, Kawano K (1992) Stroke 23:1400–1403PubMedGoogle Scholar
  18. 18.
    Bair BW, Hart N, Einspahr J, Liu G, Dong Z, Alberts D, Bowden TG (2002) Cancer Epidemiol Biomarkers Prev 11:1645–1652PubMedGoogle Scholar
  19. 19.
    Huang C, Ma W, Hanenberger D, Cleary M, Bowden TG, Dong Z (1997) J Biol Chem 272:26325–26331CrossRefPubMedGoogle Scholar
  20. 20.
    Williams AD, Walz TD, Foye OW (1976) J Pharm Sci 65:126–128PubMedCrossRefGoogle Scholar
  21. 21.
    Manojlovic-Muir L (1973) Acta Cryst B29:2033–2037Google Scholar
  22. 22.
    Walker RW, Beveridge JS, Whitehouse WM (1980) Agents Actions 10:38–47PubMedCrossRefGoogle Scholar
  23. 23.
    Sheldrick GM (1997) SHELXS97. Program for the solution of crystal structure. University of Gottingen, GottingenGoogle Scholar
  24. 24.
    Wilson AJC (ed) (1992) International tables for X-ray crystallography, vol C. Kluwer, DordrechtGoogle Scholar
  25. 25.
    Sheldrick GM (1997) SHELXL97. Program for the refinement of crystal structures. University of Gottingen, GottingenGoogle Scholar
  26. 26.
    Babior MB, Kipnes SR, Curnutte TJ (1973) J Clin Invest 52:741–744PubMedCrossRefGoogle Scholar
  27. 27.
    Jinno J, Mori H, Oshiro Y, Kikuchi T, Sakurai H (1991) Free Rad Res Commun 15:223–230CrossRefGoogle Scholar
  28. 28.
    Gao D, Kakuma M, Oka S, Sugiuo K, Sakurai H (2000) Bioorg Med Chem 8:2561–2569CrossRefPubMedGoogle Scholar
  29. 29.
    Masaki H, Okano Y, Ochiai Y, Obayashi K, Akamatsu H, Sakurai H (2002) Free Rad Res 36:705–709CrossRefGoogle Scholar
  30. 30.
    Masaki H, Sakurai H (1997) J Dermatol Sci 14:207–216CrossRefPubMedGoogle Scholar
  31. 31.
    Masaki H, Sakurai H (1995) Photomed Photobiol 17:121–124Google Scholar
  32. 32.
    Yasui H, Sakurai H (2000) Biochem Biophys Res Commun 269:131–136CrossRefPubMedGoogle Scholar
  33. 33.
    Yasui H, Sakurai H (2003) Exp Dermatol 12:655–661CrossRefPubMedGoogle Scholar
  34. 34.
    Cozar O, David L, Chis V, Cosma C, Znamirovschi V, Damian G, Bratu I, Bora G (1995) Appl Magn Reson 8:235–242CrossRefGoogle Scholar
  35. 35.
    Peisach J, Blumberg WE (1974) Arch Biochem Biophys 165:691–708CrossRefPubMedGoogle Scholar
  36. 36.
    Viossat B, Daran J, Savouret G, Morgant G, Greenaway F, Dung N, Pham-Tran V, Sorenson JRJ (2003) J Inorg Biochem 96:375–385CrossRefPubMedGoogle Scholar
  37. 37.
    Greenaway FT, Norris LJ, Sorenson JRJ (1988) Inorg Chim Acta 145:279–284CrossRefGoogle Scholar
  38. 38.
    Kelley EE, Trostschansky A, Rubbo H, Freeman BA, Radi R, Tarpey MM (2004) J Biol Chem 279:37231–37234Google Scholar

Copyright information

© SBIC 2005

Authors and Affiliations

  • T. Fujimori
    • 1
  • S. Yamada
    • 1
  • H. Yasui
    • 1
  • H. Sakurai
    • 1
  • Y. In
    • 2
  • T. Ishida
    • 2
  1. 1.Department of Analytical and Bioinorganic ChemistryKyoto Pharmaceutical UniversityKyotoJapan
  2. 2.Department of Physical ChemistryOsaka University of Pharmaceutical SciencesOsakaJapan

Personalised recommendations