JBIC Journal of Biological Inorganic Chemistry

, Volume 10, Issue 7, pp 713–721

Mechanisms of iron–sulfur cluster assembly: the SUF machinery

  • M. Fontecave
  • S. Ollagnier de Choudens
  • B. Py
  • F. Barras
MINIREVIEW

Abstract

Biosynthesis of iron-sulfur clusters is a cellular process which depends on complex protein machineries. Escherichia coli contains two such biosynthetic systems, ISC and SUF. In this review article we specifically make a presentation of the various Suf proteins and discuss the molecular mechanisms by which these proteins work together to assemble Fe and S atoms within a scaffold and to transfer the resulting cluster to target proteins.

Keywords

Iron–sulfur cluster Biosynthesis Cluster assembly Cysteine desulfurase Scaffold protein Oxidative stress 

References

  1. 1.
    Beinert H, Kiley PJ (1999) Curr Opin Chem Biol 3:152–157CrossRefPubMedGoogle Scholar
  2. 2.
    Beinert H (2000) JBIC 5:2–15CrossRefPubMedGoogle Scholar
  3. 3.
    Kiley PJ, Beinert H (2003) Curr Opin Microbiol 6:181–185CrossRefPubMedGoogle Scholar
  4. 4.
    Jacobson MR, Cash VL, Weiss MC, Laird NF, Newton WE, Dean DR (1989) Mol Gen Genet 219:49–57CrossRefPubMedGoogle Scholar
  5. 5.
    Kennedy C, Dean DR (1992) Mol Gen Genet 231:494–498CrossRefPubMedGoogle Scholar
  6. 6.
    Zheng L, White RH, Cash VL, Jack RF, Dean DR (1993) Proc Natl Acad Sci USA 90:2754–2758PubMedCrossRefGoogle Scholar
  7. 7.
    Zheng L, Cash VL, Flint DH, Dean DR (1998) J Biol Chem 273:13264–13272CrossRefPubMedGoogle Scholar
  8. 8.
    Takahashi Y, Nakamura M (1999) J Biochem (Tokyo) 126:917–926Google Scholar
  9. 9.
    Lill R, Diekert K, Kaut A, Lange H, Pelzer W, Prohl C, Kispal G (1999) Biol Chem 380:1157–1166CrossRefPubMedGoogle Scholar
  10. 10.
    Lill R, Mühlenhoff U (2005) Trends Biochem Sci 30:133–141CrossRefPubMedGoogle Scholar
  11. 11.
    Balk J, Lill R (2004) Chem Bio Chem 5:1044–1049PubMedGoogle Scholar
  12. 12.
    Moller SG, Kunkel T, Chua NH (2001) Genes Dev 15:90–103CrossRefPubMedGoogle Scholar
  13. 13.
    Xu XM, Moller SG (2004) Proc Natl Acad Sci USA 101:9143–9148CrossRefPubMedGoogle Scholar
  14. 14.
    Xu XM, Adams S, Chuan NH, Moller SG (2005) J Biol Chem 280:6648–6654CrossRefPubMedGoogle Scholar
  15. 15.
    Hjorth E, Hadfi K, Zauner S, Maier UG (2005) FEBS Lett 579:1129–1135CrossRefPubMedGoogle Scholar
  16. 16.
    Nachin L, El Hassouni M, Loiseau L, Expert D, Barras F (2001) Mol Microbiol 39:960–972CrossRefPubMedGoogle Scholar
  17. 17.
    Nachin L, Loiseau L, Expert D, Barras F (2003) EMBO J 22:427–437CrossRefPubMedGoogle Scholar
  18. 18.
    Zheng M, Wang X, Templeton LJ, Smulski DR, LaRossa RA, Storz G (2001) J Bacteriol 183:4562–4570CrossRefPubMedGoogle Scholar
  19. 19.
    Outten FW, Djaman O, Storz G (2004) Mol Microbiol 52:861–872CrossRefPubMedGoogle Scholar
  20. 20.
    Loiseau L, Ollagnier de Choudens S, Lascoux D, Forest E, Fontecave M, Barras F (2005) J Biol Chem 280:26760–26769CrossRefPubMedGoogle Scholar
  21. 21.
    Barras F, Loiseau L, Py B (2005) Adv Microbiol Physiol Vol 50 (in press)Google Scholar
  22. 22.
    Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Annu Rev Biochem 74:247–281CrossRefPubMedGoogle Scholar
  23. 23.
    Patzer SI, Hantke K (1999) J Bacteriol 181:3307–3309PubMedGoogle Scholar
  24. 24.
    Takahashi Y, Tokumoto U (2002) J Biol Chem 277:28380–28383CrossRefPubMedGoogle Scholar
  25. 25.
    Law AE, Mullineaux CW, Hirst EM, Saldanha J, Wilson RJ (2000) Protist 151:317–327CrossRefPubMedGoogle Scholar
  26. 26.
    Lee JH, Yeo WS, Roe JH (2004) Mol Microbiol 51:1745–1755CrossRefPubMedGoogle Scholar
  27. 27.
    McHugh JP, Rodriguez-Quinones F, Abdul-Tehrani H, Svistunenko DA, Poole RK, Cooper CE, Andrews SC (2003) J Biol Chem 278:29478–29486CrossRefPubMedGoogle Scholar
  28. 28.
    Tokumoto U, Kitamura S, Fukuyama K, Takahashi Y (2004) J Biochem (Tokyo) 136:199–209Google Scholar
  29. 29.
    Mihara H, Kurihara T, Yoshimura T, Soda K, Esaki N (1997) J Biol Chem 272:22417–22424CrossRefPubMedGoogle Scholar
  30. 30.
    Mihara H, Maeda M, Fujii T, Kurihara T, Hata Y, Esaki N (1999) J Biol Chem 274:14768–14772CrossRefPubMedGoogle Scholar
  31. 31.
    Mihara H, Kurihara T, Yoshimura T, Esaki N (2000) J Biochem (Tokyo) 127:559–567Google Scholar
  32. 32.
    Loiseau L, Ollagnier-de-Choudens S, Nachin L, Fontecave M, Barras F (2003) J Biol Chem 278:38352–38359CrossRefPubMedGoogle Scholar
  33. 33.
    Outten FW, Wood MJ, Munoz FM, Storz G (2003) J Biol Chem 278:45713–45719CrossRefPubMedGoogle Scholar
  34. 34.
    Ollagnier-de-Choudens S, Lascoux D, Loiseau L, Barras F, Forest E, Fontecave M (2003) FEBS Lett 555:263–267CrossRefPubMedGoogle Scholar
  35. 35.
    Fujii T, Maeda M, Mihara H, Kurihara T, Esaki N, Hata Y (2000) Biochemistry 39:1263–1273CrossRefPubMedGoogle Scholar
  36. 36.
    Mihara H, Fujii T, Kato S, Kurihara T, Hata Y, Esaki N (2002) J Biochem (Tokyo) 131:679–685Google Scholar
  37. 37.
    Lima CD (2002) J Mol Biol 315:1199–1208CrossRefPubMedGoogle Scholar
  38. 38.
    Mihara H, Esaki N (2002) Appl Microbiol Biotechnol 60:12–23CrossRefPubMedGoogle Scholar
  39. 39.
    Tirupati B, Vey JL, Drennan CL, Bollinger JM (2004) J Biol Chem 43:12210–12219Google Scholar
  40. 40.
    Adinolfi S, Rizzo F, Masino L, Nair M, Martin SR, Pastore A, Temussi PA (2004) Eur J Biochem. 271:2093–2100CrossRefPubMedGoogle Scholar
  41. 41.
    Ollagnier-de-Choudens S, Mattioli T, Takahashi Y, Fontecave M (2001) J Biol Chem 276:22604–22607PubMedCrossRefGoogle Scholar
  42. 42.
    Krebs C, Agar JN, Smith AD, Frazzon J, Dean DR, Huynh BH, Johnson MK (2001) Biochemistry 40:14069–14080CrossRefPubMedGoogle Scholar
  43. 43.
    Wu G, Mansy SS, Hemann C, Hille R, Surerus KK, Cowan JA (2002) J Biol Inorg Chem 7:526–532CrossRefPubMedGoogle Scholar
  44. 44.
    Loiseau L, Ollagnier de Choudens S, Nachin L, Fontecave M, Barras F (2003) J Biol Chem 278:38352–38359CrossRefPubMedGoogle Scholar
  45. 45.
    Ollagnier-de-Choudens S, Sanakis Y, Fontecave M (2004) J Biol Inorg Chem 9:828–838PubMedCrossRefGoogle Scholar
  46. 46.
    Wollenberg M, Berndt C, Bill E, Schwenn JD, Seidler A (2003) Eur J Biochem 270:1662–1671CrossRefPubMedGoogle Scholar
  47. 47.
    Morimoto K, Nishio K, Nakai M (2002) FEBS Lett 519:123–127CrossRefPubMedGoogle Scholar
  48. 48.
    Popescu CV, Bates DM, Beinert H, Münck E, Kiley PJ (1998) Proc Natl Acad Sci USA 95:13431–13435CrossRefPubMedGoogle Scholar
  49. 49.
    Benda R, Tse Sum Bui B, Schunemann V, Florentin D, Marquet A, Trautwein A (2002) Biochemistry 41:15000–15006CrossRefPubMedGoogle Scholar
  50. 50.
    Bilder PW, Ding H, Newcomer ME (2003) Biochemistry 43:133–139CrossRefGoogle Scholar
  51. 51.
    Cupp-Vickery JR, Silberg JJ, Ta DT, Vickery LE (2004) J Mol Biol 338:127–37CrossRefPubMedGoogle Scholar
  52. 52.
    Ding H, Clark RJ (2004) Biochem J 379:433–440CrossRefPubMedGoogle Scholar
  53. 53.
    Ding H, Clark RJ, Ding B (2004) J Biol Chem 279:37499–37504CrossRefPubMedGoogle Scholar
  54. 54.
    Urbina HD, Silberg JJ, Hoff KG, Vickery LE (2001) J Biol Chem 276:44521–44526CrossRefPubMedGoogle Scholar
  55. 55.
    Nuth M, Yoon T, Cowan JA (2002) J Am Chem Soc 124:8774–8775CrossRefPubMedGoogle Scholar
  56. 56.
    Smith AD, Agar JN, Johnson KA, Frazzon J, Amster IJ, Dean DR, Johnson MK (2001) J Am Chem Soc 123:11103–11104CrossRefPubMedGoogle Scholar
  57. 57.
    Adinolfi S, Rizzo F, Masino L, Nair M, Martin SR, Pastore A, Temussi PA (2004) Eur J Biochem 271:2093–2100CrossRefPubMedGoogle Scholar
  58. 58.
    Mansy SS, Wu G, Surerus KK, Cowan JA (2002) J Biol Chem 277:21397–21404CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2005

Authors and Affiliations

  • M. Fontecave
    • 1
  • S. Ollagnier de Choudens
    • 1
  • B. Py
    • 2
  • F. Barras
    • 2
  1. 1.Laboratoire de Chimie et Biochimie des Centres Rédox Biologiques, DRDC-CBCEA/CNRS/Université Joseph Fourier, CEA-GrenobleGrenoble Cedex 09France
  2. 2.Laboratoire de Chimie BactérienneUPR-CNRS 9043, IBSMMarseille Cedex 20France

Personalised recommendations