JBIC Journal of Biological Inorganic Chemistry

, Volume 10, Issue 6, pp 625–635

Structure and coordination of CuB in the Acidianus ambivalens aa3 quinol oxidase heme–copper center

  • Tiago M. Bandeiras
  • Manuel M. Pereira
  • Miguel Teixeira
  • Pierre Moenne-Loccoz
  • Ninian J. Blackburn
Original Article

Abstract

The coordination environment of the CuB center of the quinol oxidase from Acidianus ambivalens, a type B heme–copper oxygen reductase, was investigated by Fourier transform (FT) IR and extended X-ray absorption fine structure (EXAFS) spectroscopy. The comparative structural chemistry of dinuclear Fe–Cu sites of the different types of oxygen reductases is of great interest. Fully reduced A. ambivalens quinol oxidase binds CO at the heme a3 center, with ν(CO)=1,973 cm−1. On photolysis, the CO migrated to the CuB center, forming a CuBI–CO complex with ν(CO)=2,047 cm−1. Raising the temperature of the samples to 25°C did not result in a total loss of signal in the FTIR difference spectrum although the intensity of these signals was reduced sevenfold. This observation is consistent with a large energy barrier against the geminate rebinding of CO to the heme iron from CuB, a restricted limited access at the active-site pocket for a second binding, and a kinetically stable CuB–CO complex in A. ambivalens aa3. The CuB center was probed in a number of different states using EXAFS spectroscopy. The oxidized state was best simulated by three histidines and a solvent O scatterer. On reduction, the site became three-coordinate, but in contrast to the bo3 enzyme, there was no evidence for heterogeneity of binding of the coordinated histidines. The CuB centers in both the oxidized and the reduced enzymes also appeared to contain substoichiometric amounts (0.2 mol equiv) of nonlabile chloride ion. EXAFS data of the reduced carbonylated enzyme showed no difference between dark and photolyzed forms. The spectra could be well fit by 2.5 imidazoles, 0.5 Cl and 0.5 CO ligands. This arrangement of scatterers would be consistent with about half the sites remaining as unligated Cu(his)3 and half being converted to Cu(his)2ClCO, a 50/50 ratio of Cu(his)2Cl and Cu(his)3CO, or some combination of these formulations.

Keywords

Cytochrome c oxidase Heme–copper Quinol oxidase Acidianus ambivalens Extremophile 

Supplementary material

775_2005_12_MOESM1_ESM.pdf (145 kb)
Supplementary material

References

  1. 1.
    Abramson J, Riistama S, Larsson G, Jasaitis A, Svensson-Ek M, Laakkonen L, Puustinen A, Iwata S, Wikstrom M (2000) Nat Struct Biol 7:910–917CrossRefPubMedGoogle Scholar
  2. 2.
    Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Nature 376:660–669CrossRefPubMedGoogle Scholar
  3. 3.
    Soulimane T, Buse G, Bourenkov GP, Bartunik HD, Huber R, Than ME (2000) EMBO J 19:1766–1776CrossRefPubMedGoogle Scholar
  4. 4.
    Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1995) Science 269:1069–1074PubMedCrossRefGoogle Scholar
  5. 5.
    Svensson-Ek M, Abramson J, Larsson G, Tornroth S, Brzezinski P, Iwata S (2002) J Mol Biol 321:329–339CrossRefPubMedGoogle Scholar
  6. 6.
    Pereira MM, Santana M, Teixeira M (2001) Biochim Biophys Acta 1505:185–208PubMedCrossRefGoogle Scholar
  7. 7.
    Gomes CM, Backgren C, Teixeira M, Puustinen A, Verkhovskaya ML, Wikstrom M, Verkhovsky MI (2001) FEBS Lett 497:159–164CrossRefPubMedGoogle Scholar
  8. 8.
    Bandeiras TM, Salgueiro C, Kletzin A, Gomes CM, Teixeira M (2002) FEBS Lett 531:273–277CrossRefPubMedGoogle Scholar
  9. 9.
    Gomes CM, Lemos RS, Teixeira M, Kletzin A, Huber H, Stetter KO, Schafer G, Anemuller S (1999) Biochim Biophys Acta 1411:134–141PubMedCrossRefGoogle Scholar
  10. 10.
    Lemos RS, Gomes CM, Teixeira M (2001) Biochem Biophys Res Commun 281:141–150CrossRefPubMedGoogle Scholar
  11. 11.
    Anemüller S, Schmidt CL, Pacheco I, Schäfer G, Teixeira M (1994) FEMS Microbiol Lett 117:275–280CrossRefGoogle Scholar
  12. 12.
    Purschke WG, Schmidt CL, Petersen A, Schafer G (1977) Bacteriol J 179:1344–1353Google Scholar
  13. 13.
    Giuffre A, Gomes CM, Antonini G, D’Itri E, Teixeira M, Brunori M (1997) Eur J Biochem 250:383–388CrossRefPubMedGoogle Scholar
  14. 14.
    Fann YC, Ahmed I, Blackburn NJ, Boswell JS, Verkhovskaya ML, Hoffman BM, Wikstrom M (1995) Biochemistry 34:10245–10255CrossRefPubMedGoogle Scholar
  15. 15.
    Teixeira M, Batista R, Campos AP, Gomes C, Mendes J, Pacheco I, Anemuller S, Hagen WR (1995) Eur J Biochem 227:322–327CrossRefPubMedGoogle Scholar
  16. 16.
    Blackburn NJ, Rhames FC, Ralle M, Jaron S (2000) J Biol Inorg Chem 5:341–353PubMedCrossRefGoogle Scholar
  17. 17.
    Eisses JF, Stasser JP, Ralle M, Kaplan J, Blackburn NJ (2000) Biochemistry 39:7337–7342CrossRefPubMedGoogle Scholar
  18. 18.
    George GN (1995) EXAFSPAK, Stanford Synchrotron Radiation LaboratoryGoogle Scholar
  19. 19.
    Binsted N, Gurman SJ, Campbell JW (1998) Daresbury Laboratory EXCURV98 ProgramGoogle Scholar
  20. 20.
    Das TK, Gomes CM, Bandeiras TM, Pereira MM, Teixeira M, Rousseau DL (2004) Biochim Biophys Acta 1655:306–320PubMedCrossRefGoogle Scholar
  21. 21.
    Pereira MM, Teixeira M (2004) Biochim Biophys Acta 1655:340–346PubMedCrossRefGoogle Scholar
  22. 22.
    Einarsdottir O, Killough PM, Fee JA, Woodruff WH (1989) J Biol Chem 264:2405–2408PubMedGoogle Scholar
  23. 23.
    Koutsoupakis K, Stavrakis S, Pinakoulaki E, Soulimane T, Varotsis C (2002) J Biol Chem 277:32860–32866PubMedCrossRefGoogle Scholar
  24. 24.
    Aagaard A, Gilderson G, Gomes CM, Teixeira M, Brzezinski P (1990) Biochemistry 38:10032–10041CrossRefGoogle Scholar
  25. 25.
    Pasquali M, Floriani C (1984) In: Karlin KD, Zubieta J (eds) Copper coordination chemistry, biochemical and inorganic perspectives. Adenine, New York, pp 311–330Google Scholar
  26. 26.
    Patch MG, Choi H, Chapman DR, Bau R, McKee V, Reed CA (1990) Inorg Chem 29:110–119CrossRefGoogle Scholar
  27. 27.
    Villacorta GM, Lippard SJ (1987) Inorg Chem 26:3672–3676CrossRefGoogle Scholar
  28. 28.
    Sorrell TN, Malachowski MR (1983) Inorg Chem 22:1883–1887CrossRefGoogle Scholar
  29. 29.
    Sorrell TN, Borovick AS (1987) J Am Chem Soc 109:4255–4260CrossRefGoogle Scholar
  30. 30.
    Ralle M, Verkovskaya ML, Morgan JE, Verkovsky MI, Wikstrom M, Blackburn NJ (1999) Biochemistry 38:7185–7194PubMedCrossRefGoogle Scholar
  31. 31.
    Ostermeir C, Harrenga A, Ermler U, Michel H (1997) Proc Natl Acad Sci USA 94:10547–10533CrossRefPubMedGoogle Scholar
  32. 32.
    Blackburn NJ, Barr ME, Woodruff WH, van der Oost J, de Vries S (1994) Biochemistry 33:10401–10407CrossRefPubMedGoogle Scholar
  33. 33.
    Blackburn NJ, de Vries S, Barr ME, Houser RP, Tolman WB, Sanders D, Fee JA (1997) J Am Chem Soc 119:6135–6143CrossRefGoogle Scholar
  34. 34.
    Blackburn NJ, Ralle M, Gomez E, Hill MG, Patsuszyn A, Sanders D, Fee JA (1999) Biochemistry 38:7075–7084CrossRefPubMedGoogle Scholar
  35. 35.
    Osbourne JP, Cosper NJ, Stälhandske CMV, Scott RA, Alben JO, Gennis RB (1999) Biochemisty 38:4526–4532CrossRefGoogle Scholar
  36. 36.
    Alben JO, Moh PP, Fiamingo FG, Altschuld RA (1981) Proc Natl Acad Sci USA 78:234–237PubMedCrossRefGoogle Scholar
  37. 37.
    Dyer RB, Einarsdottir O, Killough PM, Lopez GJJ, Woodruff WH (1989) J Am Chem Soc 111:7657–7659CrossRefGoogle Scholar
  38. 38.
    Puustinen A, Bailey JA, D. R.B., Mecklenburg SL, Wikstrom M, Woodruff WH (1997) Biochemistry 36:13195–13200CrossRefPubMedGoogle Scholar
  39. 39.
    Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaona R, Yoshikawa S (1996) Science 272:1136–1144PubMedCrossRefGoogle Scholar
  40. 40.
    Giuffre A, Forte E, Antonini G, D’Itri E, Brunori M, Soulimane T, Buse G (1999) Biochemistry 38:1057–1065CrossRefPubMedGoogle Scholar
  41. 41.
    Moody AJ, Butler CS, Watmough NJ, Thomson AJ, Rich PR (1998) Biochem J 331:459–464PubMedGoogle Scholar
  42. 42.
    Butler CS, Seward HE, Greenwood C, Thomson AJ (1997) Biochemistry 36:16259–16266CrossRefPubMedGoogle Scholar
  43. 43.
    Kau LS, Spira-Solomon D, Penner-Hahn JE, Hodgson KO, Solomon EI (1987) J Am Chem Soc 109:6433–6422CrossRefGoogle Scholar
  44. 44.
    Pettingill TM, Strange RW, Blackburn NJ (1991) J Biol Chem 266:16996–17003PubMedGoogle Scholar
  45. 45.
    Blackburn NJ, Strange RW, Reedijk J, Volbeda A, Farooq A, Karlin KD, Zubieta J (1989) Inorg Chem 28:1349–1357CrossRefGoogle Scholar
  46. 46.
    Yoshikawa S, Shinzawa-Itoh K, Nakashima R, Yaono R, Yamashita E, Inoue N, Yao M, Fei MJ, Libeu CP, Mizushima T, Yamaguchi H, Tomizaki T, Tsukihara T (1998) Science 280:1723–1729CrossRefPubMedGoogle Scholar
  47. 47.
    Harrenga A, Michel H (1999) J Biol Chem 274:33296–33299CrossRefPubMedGoogle Scholar
  48. 48.
    Wikstrom M (2000) Biochim Biophys Acta 1458:188–198PubMedCrossRefGoogle Scholar
  49. 49.
    Popovic DM, Stuchebrukhov AA (2004) FEBS Lett 566:126–130CrossRefPubMedGoogle Scholar

Copyright information

© SBIC 2005

Authors and Affiliations

  • Tiago M. Bandeiras
    • 1
  • Manuel M. Pereira
    • 1
  • Miguel Teixeira
    • 1
  • Pierre Moenne-Loccoz
    • 2
  • Ninian J. Blackburn
    • 2
  1. 1.Instituto de Tecnologia Quìmica e BiológicaUniversidade Nova de LisboaOeirasPortugal
  2. 2.Department of Environmental and Biomolecular SystemsOGI School of Science and Engineering at OHSUBeavertonUSA

Personalised recommendations