Heme-copper/dioxygen adduct formation relevant to cytochrome c oxidase: spectroscopic characterization of [(6L)FeIII-(O22−)-CuII]+

  • Reza A. Ghiladi
  • Hong-wei Huang
  • Pierre Moënne-Loccoz
  • Jay Stasser
  • Ninian J. Blackburn
  • Amina S. Woods
  • Robert J. Cotter
  • Christopher D. Incarvito
  • Arnold L. Rheingold
  • Kenneth D. Karlin
Original Article

Abstract

In the further development and understanding of heme-copper dioxygen reactivity relevant to cytochrome c oxidase O2-reduction chemistry, we describe a high-spin, five-coordinate dioxygen (peroxo) adduct of an iron(II)-copper(I) complex, [(6L)FeIICuI](BArF20) (1), where 6L is a tetraarylporphyrinate with a tethered tris(2-pyridylmethyl)amine chelate for copper. Reaction of 1 with O2 in MeCN affords a remarkably stable [t1/2 (rt; MeCN)≈60 min] adduct, [(6L)FeIII-(O22-)-CuII]+ (2) [EPR silent; λmax=418 (Soret), 561 nm], formulated as a peroxo complex based on manometry (1:O2=1:1; spectrophotometric titration, −40 °C, MeCN), mass spectrometry {MALDI-TOF-MS: 16O2, m/z 1191 ([(6L)FeIII-(16O22−)-CuII]+); 18O2, m/z 1195}, and resonance Raman spectroscopy (ν(O-O)=788 cm–1; Δ16O2/18O2=44 cm–1; Δ16O2/16/18O2=22 cm–1). 1H and 2H NMR spectroscopy (−40 °C, MeCN) reveals that 2 is the first heme-copper peroxo complex which is high-spin, with downfield-shifted pyrrole resonances (δpyrrole=75 ppm, s, br) and upfield shifted peaks at δ= −22, −35, and −40 ppm, similar to the pattern observed for the μ-oxo complex [(6L)FeIII-O-CuII](BArF) (3) (known S=2 system, antiferromagnetically coupled high-spin FeIII and CuII). The corresponding magnetic moment measurement (Evans method, CD3CN, −40 °C) also confirms the S=2 spin state, with μB=4.9. Structural insights were obtained from X-ray absorption spectroscopy, showing Fe–O (1.83 Å) and Cu–O (1.882 Å) bonds, and an Fe...Cu distance of 3.35(2) Å, suggestive of a μ-1,2-peroxo ligand present in 2. The reaction of 2 with cobaltocene gives 3, differing from the observed full reduction seen with other heme-Cu peroxo complexes. Finally, thermal decomposition of 2 yields 3, with concomitant release of 0.5 mol O2 per mol 2, as confirmed quantitatively by an alkaline pyrogallol dioxygen scavenging solution.

Keywords

Heme-copper Iron(II)-copper(I) complex Peroxo complex Mass spectrometry Resonance Raman spectroscopy Dioxygen adduct Model compound 

Supplementary material

supp.pdf (486 kb)
(PDF 487 KB)

References

  1. 1.
    Ferguson-Miller S, Babcock GT (1996) Chem Rev 96:2889–2907CrossRefPubMedGoogle Scholar
  2. 2.
    Michel H, Behr J, Harrenga A, Kannt A (1998) Annu Rev Biophys Biomol Struct 27:329–356CrossRefPubMedGoogle Scholar
  3. 3.
    Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Nature 376:660–669CrossRefPubMedGoogle Scholar
  4. 4.
    Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1995) Science 269:1069–1074PubMedGoogle Scholar
  5. 5.
    Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) Science 272:1136–1144PubMedGoogle Scholar
  6. 6.
    Ostermeier C, Harrenga A, Ermler U, Michel H (1997) Proc Natl Acad Sci USA 94:10547–10553CrossRefPubMedGoogle Scholar
  7. 7.
    Yoshikawa S, Shinzawa-Itoh K, Nakashima R, Yaono R, Yamashita E, Inoue N, Yao M, Jei-Fei M, Libeu CP, Mizushima T, Yamaguchi H, Tomizaki T, Tsukihara T (1998) Science 280:1723–1729CrossRefPubMedGoogle Scholar
  8. 8.
    Harrenga A, Michel H (1999) J Biol Chem 274:33296–33299CrossRefPubMedGoogle Scholar
  9. 9.
    Soulimane T, Buse G, Bourenkov GP, Bartunik HD, Huber R, Than ME (2000) EMBO J 19:1766–1776CrossRefPubMedGoogle Scholar
  10. 10.
    Abramson J, Riistama S, Larsson G, Jasaitis A, Svensson-Ek M, Laakkonen L, Puustinen A, Iwata S, Wikstrom M (2000) Nat Struct Biol 7:910–917CrossRefPubMedGoogle Scholar
  11. 11.
    Svensson-Ek M, Abramson J, Larsson G, Tornroth S, Brzezinski P, Iwata S (2002) J Mol Biol 321:329–339CrossRefPubMedGoogle Scholar
  12. 12.
    Babcock GT (1999) Proc Natl Acad Sci USA 96:12971–12973CrossRefPubMedGoogle Scholar
  13. 13.
    Fabian M, Wong WW, Gennis RB, Palmer G (1999) Proc Natl Acad Sci USA 96:13114–13117CrossRefPubMedGoogle Scholar
  14. 14.
    Proshlyakov DA, Pressler MA, Babcock GT (1998) Proc Natl Acad Sci USA 95:8020–8025CrossRefPubMedGoogle Scholar
  15. 15.
    Blomberg MRA, Siegbahn PEM, Wikström M (2003) Inorg Chem 42:5231–5243CrossRefPubMedGoogle Scholar
  16. 16.
    Das TK, Pecoraro C, Tomson FL, Gennis RB, Rousseau DL (1998) Biochemistry 37:14471–14476CrossRefPubMedGoogle Scholar
  17. 17.
    Okeley NM, Van der Donk WA (2000) Chem Biol 7:R159–R171CrossRefPubMedGoogle Scholar
  18. 18.
    Michel H (1998) Proc Natl Acad Sci USA 95:12819–12824CrossRefPubMedGoogle Scholar
  19. 19.
    Zaslavsky D, Gennis RB (2000) Biochim Biophys Acta 1458:XXX–XXXGoogle Scholar
  20. 20.
    Wikström M, Verkhovsky MI (2002) Biochim Biophys Acta 1555:128–132PubMedGoogle Scholar
  21. 21.
    Szundi I, Van Eps N, Einarsdöttir O (2003) Biochemistry 42:5074–5090CrossRefPubMedGoogle Scholar
  22. 22.
    Van Eps N, Szundi I, Einarsdöttir O (2003) Biochemistry 42:5065–5073CrossRefPubMedGoogle Scholar
  23. 23.
    Kitagawa T (2000) J Inorg Biochem 82:9–18CrossRefPubMedGoogle Scholar
  24. 24.
    Verkhovsky MI, Jasaitis A, Verkhovskaya ML, Morgan JE, Wikström M (1999) Nature 400:480–483CrossRefPubMedGoogle Scholar
  25. 25.
    Kim E, Chufan EE, Kamaraj K, Karlin KD (2004) Chem Rev 104:1077–1133CrossRefPubMedGoogle Scholar
  26. 26.
    Collman JP, Boulatov R, Sunderland CJ, Fu L (2004) Chem Rev 104:561–588CrossRefPubMedGoogle Scholar
  27. 27.
    Collman JP, Boulatov R, Sunderland CJ (2003) Porphyrin Handbook 11:1–49Google Scholar
  28. 28.
    Collman JP, Herrmann PC, Boitrel B, Zhang X, Eberspacher TA, Fu L, Wang J, Rousseau DL, Williams ER (1994) J Am Chem Soc 116:9783–9784Google Scholar
  29. 29.
    Sasaki T, Nakamura N, Naruta Y (1998) Chem Lett 351–352Google Scholar
  30. 30.
    Ghiladi RA, Ju TD, Lee D-H, Moënne-Loccoz P, Kaderli S, Neuhold Y-M, Zuberbühler AD, Woods AS, Cotter RJ, Karlin KD (1999) J Am Chem Soc 121:9885–9886CrossRefGoogle Scholar
  31. 31.
    Kopf M-A, Karlin KD (1999) Inorg Chem 38:4922–4923CrossRefPubMedGoogle Scholar
  32. 32.
    Kopf M-A, Neuhold Y-M, Zuberbühler AD, Karlin KD (1999) Inorg Chem 38:3093–3102CrossRefGoogle Scholar
  33. 33.
    Naruta Y, Sasaki T, Tani F, Tachi Y, Kawato N, Nakamura N (2001) J Inorg Biochem 83:239–246CrossRefPubMedGoogle Scholar
  34. 34.
    Ghiladi RA, Hatwell KR, Karlin KD, Huang H, Moënne-Loccoz P, Krebs C, Huynh BJ, Marzilli LA, Cotter RJ, Kaderli S, Zuberbühler AD (2001) J Am Chem Soc 123:6183–6184CrossRefPubMedGoogle Scholar
  35. 35.
    Kim E, Helton ME, Wasser IM, Karlin KD, Lu S, Huang H, Moënne-Loccoz P, Incarvito CD, Rheingold AL, Honecker M, Kaderli S, Zuberbühler AD (2003) Proc Natl Acad Sci USA 100:3623–3628CrossRefPubMedGoogle Scholar
  36. 36.
    Collman JP, Sunderland CJ, Berg KE, Vance MA, Solomon EI (2003) J Am Chem Soc 125:6648–6649CrossRefPubMedGoogle Scholar
  37. 37.
    Chishiro T, Shimazaki Y, Tani F, Tachi Y, Naruta Y, Karasawa S, Hayami S, Maeda Y (2003) Angew Chem Int Ed 42:2788–2791CrossRefGoogle Scholar
  38. 38.
    Blackburn NJ, Rhames FC, Ralle M, Jaron S (2000) J Biol Inorg Chem 5:341–353PubMedGoogle Scholar
  39. 39.
    Karlin KD, Kaderli S, Zuberbühler AD (1997) Acc Chem Res 30:139–147CrossRefGoogle Scholar
  40. 40.
    Jacobson RR, Tyeklár Z, Karlin KD, Liu S, Zubieta J (1988) J Am Chem Soc 110:3690–3692Google Scholar
  41. 41.
    Karlin KD, Wei N, Jung B, Kaderli S, Zuberbühler AD (1991) J Am Chem Soc 113:5868–5870Google Scholar
  42. 42.
    Karlin KD, Wei N, Jung B, Kaderli S, Niklaus P, Zuberbühler AD (1993) J Am Chem Soc 115:9506–9514Google Scholar
  43. 43.
    Karlin KD, Lee D-H, Kaderli S, Zuberbühler AD (1997) Chem Commun 475–476Google Scholar
  44. 44.
    Zhang CX, Kaderli S, Costas M, Kim E, Neuhold Y-M, Karlin KD, Zuberbühler AD (2003) Inorg Chem 42:1807–1824CrossRefPubMedGoogle Scholar
  45. 45.
    Ghiladi RA, Kretzer RM, Guzei I, Rheingold AL, Neuhold Y-M, Hatwell KR, Zuberbühler AD, Karlin KD (2001) Inorg Chem 40:5754–5767CrossRefPubMedGoogle Scholar
  46. 46.
    Ju TD, Ghiladi RA, Lee D-H, van Strijdonck GPF, Woods AS, Cotter RJ, Young VG Jr, Karlin KD (1999) Inorg Chem 38:2244–2245CrossRefGoogle Scholar
  47. 47.
    Ghiladi RA, Karlin KD (2002) Inorg Chem 41:2400–2407Google Scholar
  48. 48.
    Tyeklár Z, Jacobson RR, Wei N, Murthy NN, Zubieta J, Karlin KD (1993) J Am Chem Soc 115:2677–2689Google Scholar
  49. 49.
    Stenkamp RE (1994) Chem Rev 94:715–726Google Scholar
  50. 50.
    Mirica LM, Ottenwaelder X, Stack TDP (2004) Chem Rev 104:1013–1045CrossRefPubMedGoogle Scholar
  51. 51.
    Kitajima N, Fujisawa K, Fujimoto C, Moro-oka Y, Hashimoto S, Kitagawa T, Toriumi K, Tasumi K, Nakamura A (1992) J Am Chem Soc 114:1277–1291Google Scholar
  52. 52.
    Kitajima N, Moro-oka Y (1994) Chem Rev 94:737–757Google Scholar
  53. 53.
    Liang H-C, Karlin KD, Dyson R, Kaderli S, Jung B, Zuberbühler AD (2000) Inorg Chem 39:5884–5894CrossRefPubMedGoogle Scholar
  54. 54.
    Obias HV, Lin Y, Murthy NN, Pidcock E, Solomon EI, Ralle M, Blackburn NJ, Neuhold Y-M, Zuberbühler AD, Karlin KD (1998) J Am Chem Soc 120:12960–12961CrossRefGoogle Scholar
  55. 55.
    Pidcock E, Obias HV, Zhang CX, Karlin KD, Solomon EI (1998) J Am Chem Soc 120:7841–7847CrossRefGoogle Scholar
  56. 56.
    Selke M, Sisemore MF, Valentine JS (1996) J Am Chem Soc 118:2008–2012CrossRefGoogle Scholar
  57. 57.
    Burstyn JN, Roe JA, Miksztal AR, Shaevitz BA, Lang G, Valentine JS (1988) J Am Chem Soc 110:1382–1388Google Scholar
  58. 58.
    Chufán EE, Karlin KD (2003) J Am Chem Soc 125:16160–16161CrossRefPubMedGoogle Scholar
  59. 59.
    Baldwin MJ, Ross PK, Pate JE, Tyeklár Z, Karlin KD, Solomon EI (1991) J Am Chem Soc 113:8671–8679Google Scholar
  60. 60.
    Collman JP, Fu L, Herrmann PC, Zhang X (1997) Science 275:949–951CrossRefPubMedGoogle Scholar
  61. 61.
    Kitajima N (1993) In: Karlin KD, Tyeklár Z (eds) Bioinorganic chemistry of copper. Chapman & Hall, New York, pp 251–263Google Scholar
  62. 62.
    Pidcock E, Obias HV, Abe M, Liang H-C, Karlin KD, Solomon EI (1999) J Am Chem Soc 121:1299–1308CrossRefGoogle Scholar
  63. 63.
    Kim K, Lippard SJ (1996) J Am Chem Soc 118:4914–4915CrossRefGoogle Scholar
  64. 64.
    Dong Y, Zang Y, Shu L, Wilkinson EC, Que L Jr (1997) J Am Chem Soc 119:12683–12684CrossRefGoogle Scholar
  65. 65.
    Dong Y, Yan S, Young VG Jr, Que L Jr (1996) Angew Chem Int Ed Engl 35:618–620CrossRefGoogle Scholar
  66. 66.
    Obias HV, van Strijdonck GPF, Lee D-H, Ralle M, Blackburn NJ, Karlin KD (1998) J Am Chem Soc 120:9696–9697CrossRefGoogle Scholar
  67. 67.
    Walker FA, Simonis U (1993) In: Berliner LJ, Reuben J (eds) Biological magnetic resonance. Plenum Press, New York, pp 133–274Google Scholar
  68. 68.
    Walker FA (2000) In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook. Academic Press, San Diego, pp 81–184Google Scholar
  69. 69.
    Karlin KD, Nanthakumar A, Fox S, Murthy NN, Ravi N, Huynh BH, Orosz RD, Day EP (1994) J Am Chem Soc 116:4753–4763Google Scholar
  70. 70.
    Nanthakumar A, Fox S, Murthy NN, Karlin KD (1997) J Am Chem Soc 119:3898–3906CrossRefGoogle Scholar
  71. 71.
    Kauffmann KE, Goddard CA, Zang Y, Holm RH, Münck E (1997) Inorg Chem 36:985–993CrossRefPubMedGoogle Scholar
  72. 72.
    Suzuki M, Ueda I, Kanatomi H, Murase I (1983) Chem Lett 185–188Google Scholar
  73. 73.
    Ookubo T, Sugimoto H, Nagayama T, Masuda H, Sato T, Tanaka K, Maeda Y, Okawa H, Hayashi Y, Uehara A, Suzuki M (1996) J Am Chem Soc 118:701–702CrossRefGoogle Scholar
  74. 74.
    Seo J, Sung N-D, Hynes RC, Chin J (1996) Inorg Chem 35:7472–7473CrossRefGoogle Scholar
  75. 75.
    Hwang J, Krebs C, Huynh BH, Edmondson DE, Theil EC, Penner-Hahn JE (2000) Science 287:122–125CrossRefPubMedGoogle Scholar
  76. 76.
    He C, DuBois JL, Hedman B, Hodgson KO, Lippard SJ (2001) Angew Chem Int Ed 40:1484–1487CrossRefGoogle Scholar
  77. 77.
    Chin D-H, La Mar GN, Balch AL (1980) J Am Chem Soc 102:4344–4350Google Scholar
  78. 78.
    Balch AL (1992) Inorg Chim Acta 198–200:297–307Google Scholar
  79. 79.
    Feig AL, Becker M, Schindler S, van Eldik R, Lippard SJ (1996) Inorg Chem 35:2590–2601CrossRefPubMedGoogle Scholar
  80. 80.
    DuBois JL, Mizoguchi TJ, Lippard SJ (2000) Coord Chem Rev 200:443–485CrossRefGoogle Scholar
  81. 81.
    Collman JP, Fu L, Herrmann PC, Wang Z, Rapta M, Bröring M, Schwenninger R, Boitrel B (1998) Angew Chem Int Ed 37:3397–3400CrossRefGoogle Scholar

Copyright information

© SBIC 2004

Authors and Affiliations

  • Reza A. Ghiladi
    • 1
  • Hong-wei Huang
    • 2
  • Pierre Moënne-Loccoz
    • 2
  • Jay Stasser
    • 2
  • Ninian J. Blackburn
    • 2
  • Amina S. Woods
    • 3
  • Robert J. Cotter
    • 3
  • Christopher D. Incarvito
    • 4
  • Arnold L. Rheingold
    • 4
    • 5
  • Kenneth D. Karlin
    • 1
  1. 1.Department of ChemistryThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Environmental & Biomolecular Systems, OGI School of Science & EngineeringOregon Health & Science UniversityBeavertonUSA
  3. 3.Department of Pharmacology and Molecular SciencesThe Johns Hopkins School of MedicineBaltimoreUSA
  4. 4.Crystallography Laboratory, Department of ChemistryUniversity of DelawareNewarkUSA
  5. 5.Chemistry DepartmentUniversity of California, San DiegoLa JollaUSA

Personalised recommendations