JBIC Journal of Biological Inorganic Chemistry

, Volume 9, Issue 8, pp 987–996

Studies on the degradation pathway of iron-sulfur centers during unfolding of a hyperstable ferredoxin: cluster dissociation, iron release and protein stability

  • Sónia S. Leal
  • Miguel Teixeira
  • Cláudio M. Gomes
Original Article


The ferredoxin from the thermoacidophile Acidianus ambivalens is a representative of the archaeal family of di-cluster [3Fe-4S][4Fe-4S] ferredoxins. Previous studies have shown that these ferredoxins are intrinsically very stable and led to the suggestion that upon protein unfolding the iron-sulfur clusters degraded via linear three-iron sulfur center species, with 610 and 520 nm absorption bands, resembling those observed in purple aconitase. In this work, a kinetic and spectroscopic investigation on the alkaline chemical denaturation of the protein was performed in an attempt to elucidate the degradation pathway of the iron-sulfur centers in respect to protein unfolding events. For this purpose we investigated cluster dissociation, iron release and protein unfolding by complementary biophysical techniques. We found that shortly after initial protein unfolding, iron release proceeds monophasically at a rate comparable to that of cluster degradation, and that no typical EPR features of linear three-iron sulfur centers are observed. Further, it was observed that EDTA prevents formation of the transient bands and that sulfide significantly enhances its intensity and lifetime, even after protein unfolding. Altogether, our data suggest that iron sulfides, which are formed from the release of iron and sulfide resulting from cluster degradation during protein unfolding in alkaline conditions, are in fact responsible for the observed intermediate spectral species, thus disproving the hypothesis suggesting the presence of a linear three-iron center intermediate. Kinetic studies monitored by visible, fluorescence and UV second-derivative spectroscopies have elicited that upon initial perturbation of the tertiary structure the iron-sulfur centers start decomposing and that the presence of EDTA accelerates the process. Also, the presence of EDTA lowers the observed melting temperature in thermal ramp experiments and the midpoint denaturant concentration in equilibrium chemical unfolding experiments, further suggesting that the clusters also play a structural role in the maintenance of the conformation of the folded state.


Iron-sulfur centers Kinetics Protein folding Stability Thermophiles 


  1. 1.
    Wittung-Stafshede P (2002) Acc Chem Res 35:201–208CrossRefPubMedGoogle Scholar
  2. 2.
    Fraústo da Silva JJR, Williams RJP (1991) The biological chemistry of the elements. Clarendon Press, OxfordGoogle Scholar
  3. 3.
    Sandberg A, Leckner J, Shi Y, Schwarz FP, Karlsson BG (2002) Biochemistry 41:1060–1069CrossRefPubMedGoogle Scholar
  4. 4.
    Leckner J, Bonander N, Wittung-Stafshede P, Malmstrom BG, Karlsson BG (1997) Biochim Biophys Acta 1342:19–27CrossRefPubMedGoogle Scholar
  5. 5.
    Gross EL, Draheim JE, Curtiss AS, Crombie B, Scheffer A, Pan B, Chiang C, Lopez A (1992) Arch Biochem Biophys 298:413–419PubMedGoogle Scholar
  6. 6.
    Moczygemba C, Guidry J, Jones KL, Gomes CM, Teixeira M, Wittung-Stafshede P (2001) Protein Sci 10:1539–1548CrossRefPubMedGoogle Scholar
  7. 7.
    Foster MW, Bian S, Surerus KK, Cowan JA (2001) J Biol Inorg Chem 6:266–274CrossRefPubMedGoogle Scholar
  8. 8.
    Bentrop D, Bertini I, Iacoviello R, Luchinat C, Niikura Y, Piccioli M, Presenti C, Rosato A (1999) Biochemistry 38:4669–4680CrossRefPubMedGoogle Scholar
  9. 9.
    Lange C, Hervas M, De la Rosa MA (2003) Biochem Biophys Res Commun 310:215–221CrossRefPubMedGoogle Scholar
  10. 10.
    Apiyo D, Jones K, Guidry J, Wittung-Stafshede P (2001) Biochemistry 40:4940–4948CrossRefPubMedGoogle Scholar
  11. 11.
    Burova TV, Bernhardt R, Pfeil W (1995) Protein Sci 4:909–916PubMedGoogle Scholar
  12. 12.
    Bera AK, Grinberg A, Bernhardt R (1999) Arch Biochem Biophys 361:315–322CrossRefPubMedGoogle Scholar
  13. 13.
    Russell MJ, Martin W (2004) Trends Biochem Sci 29:358–363CrossRefPubMedGoogle Scholar
  14. 14.
    Frazzon J, Dean DR (2003) Curr Opin Chem Biol 7:166–173CrossRefPubMedGoogle Scholar
  15. 15.
    Gomes C, Faria A, Carita J, Mendes J, Regalla M, Chicau P, Huber H, Stetter K, Teixeira M (1998) J Biol Inorg Chem 3:499–507CrossRefGoogle Scholar
  16. 16.
    Fujii T, Hata Y, Oozeki M, Moriyama H, Wakagi T, Tanaka N, Oshima T (1997) Biochemistry 36:1505–1513CrossRefPubMedGoogle Scholar
  17. 17.
    Wittung-Stafshede P, Gomes CM, Teixeira M (2000) J Inorg Biochem 78:35–41CrossRefPubMedGoogle Scholar
  18. 18.
    Jones K, Gomes CM, Huber H, Teixeira M, Wittung-Stafshede P (2002) J Biol Inorg Chem 7:357–362CrossRefPubMedGoogle Scholar
  19. 19.
    Griffin S, Higgins CL, Soulimane T, Wittung-Stafshede P (2003) Eur J Biochem 270:4736–4743CrossRefPubMedGoogle Scholar
  20. 20.
    Pereira MM, Jones KL, Campos MG, Melo AM, Saraiva LM, Louro RO, Wittung-Stafshede P, Teixeira M (2002) Biochim Biophys Acta 1601:1–8CrossRefPubMedGoogle Scholar
  21. 21.
    Higgins CL, Meyer J, Wittung-Stafshede P (2002) Biochim Biophys Acta 1599:82–89CrossRefPubMedGoogle Scholar
  22. 22.
    Higgins CL, Wittung-Stafshede P (2004) Arch Biochem Biophys 427:154–163CrossRefPubMedGoogle Scholar
  23. 23.
    Kennedy MC, Kent TA, Emptage M, Merkle H, Beinert H, Munck E (1984) J Biol Chem 259:14463–14471PubMedGoogle Scholar
  24. 24.
    Teixeira M, Batista R, Campos AP, Gomes C, Mendes J, Pacheco I, Anemuller S, Hagen WR (1995) Eur J Biochem 227:322–327PubMedGoogle Scholar
  25. 25.
    Mach H, Middaugh CR (1994) Anal Biochem 222:323–331CrossRefPubMedGoogle Scholar
  26. 26.
    Ragone R, Colonna G, Balestrieri C, Servillo L, Irace G (1984) Biochemistry 23:1871–1875PubMedGoogle Scholar
  27. 27.
    Cowart RE, Singleton FL, Hind JS (1993) Anal Biochem 211:151–155CrossRefPubMedGoogle Scholar
  28. 28.
    Shirley BA (1995) In: Shirley BA (ed) Methods in molecular biology. Humana, Totowa, NJ, USA, p 377Google Scholar
  29. 29.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer/Plenum, New YorkGoogle Scholar
  30. 30.
    Dorovska-Taran V, van Hoek A, Link TA, Visser AJ, Hagen WR (1994) FEBS Lett 348:305–310CrossRefPubMedGoogle Scholar
  31. 31.
    Iametti S, Uhlmann H, Sala N, Bernhardt R, Ragg E, Bonomi F (1996) Eur J Biochem 239:818–826CrossRefPubMedGoogle Scholar
  32. 32.
    Kojoh K, Matsuzawa H, Wakagi T (1999) Eur J Biochem 264:85–91CrossRefPubMedGoogle Scholar
  33. 33.
    Cotton FA, Wilkinson G (1972) Advanced inorganic chemistry: a comprehensive text, 3rd edn. Interscience, New YorkGoogle Scholar
  34. 34.
    Russell JB (1980) General chemistry. McGraw-Hill, New YorkGoogle Scholar
  35. 35.
    Kennedy MC, Beinert H (1988) J Biol Chem 263:8194–8198PubMedGoogle Scholar
  36. 36.
    Burova TV, Beckert V, Uhlmann H, Ristau O, Bernhardt R, Pfeil W (1996) Protein Sci 5:1890–1897PubMedGoogle Scholar

Copyright information

© SBIC 2004

Authors and Affiliations

  • Sónia S. Leal
    • 1
  • Miguel Teixeira
    • 1
  • Cláudio M. Gomes
    • 1
  1. 1.Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal

Personalised recommendations