JBIC Journal of Biological Inorganic Chemistry

, Volume 9, Issue 7, pp 914–921 | Cite as

Molecular design of an acid–base cooperative catalyst for RNA cleavage based on a dizinc complex

  • Morio Yashiro
  • Ryuto Kawahara
Original Article


The effects of donor groups of dizinc complexes, formed from a 2:1 mixture of Zn(II) and a dinucleating ligand, on adenylyl(3′-5′)adenosine (ApA) cleavage have been studied. Two dinucleating ligands were used: one had two 2-pyridylmethyl and two 2-hydroxyethyl moieties on the 1,3-diamino-2-propanol linker moiety (2), and the other had two 2-pyridylmethyl and two carboxymethyl moieties on the 1,3-diamino-2-propanol linker moiety (32−). The dizinc complex with 2 [(Zn2+)2-2] showed higher activities toward ApA cleavage than the dizinc complex using an analogous dinucleating ligand having four 2-pyridylmethyl donor moieties [(Zn2+)2-1] at pH 5–8. The former showed a bell-shaped pH–rate constant profile, whereas the latter showed a sigmoidal pattern. The differences in the pH–rate constant profile are attributable to the various distributions of the monohydroxo-dizinc species, i.e. dideprotonated species, which are responsible for ApA cleavage. The monohydroxo species of (Zn2+)2-2 has two acidic protons, which are not present in the corresponding monohydroxo species of (Zn2+)2-1. The existence of both intracomplex acid (ROH or H2O) and base catalysts (RO or OH) in (Zn2+)2-2 can explain its higher activity toward ApA cleavage than that of (Zn2+)2-1. In contrast, (Zn2+)2-32− showed lower activity toward ApA cleavage at pH 7.0, which can be ascribed to the absence of the monohydroxo-dizinc species under these conditions.


Acid–base cocatalyst Dinucleating ligands Dizinc(II) complexes Kinetics and mechanism RNA hydrolysis 





bis(4-nitrophenyl) phosphate



We thank Prof. Kazuhiko Saigo. This work was partially supported by the Tokyo Ohka Foundation for the Promotion of Science and Technology.

Supplementary material

supp.pdf (411 kb)
(PDF 411 KB)


  1. 1.
    Wilcox DE (1996) Chem Rev 96:2435–2458CrossRefPubMedGoogle Scholar
  2. 2.
    Lipscomb WN, Sträter N (1996) Chem Rev 96:2375–2433CrossRefPubMedGoogle Scholar
  3. 3.
    Sträter N, Lipscomb WN, Klabunde T, Krebs B (1996) Angew Chem Int Ed Engl 35:2024–2055CrossRefGoogle Scholar
  4. 4.
    Cowan JA (1998) Chem Rev 98:1067–1087CrossRefPubMedGoogle Scholar
  5. 5.
    Chin J (1997) Curr Opin Chem Biol 1:514–521CrossRefPubMedGoogle Scholar
  6. 6.
    Kimura E, Koike T (1997) Adv Inorg Chem 44:229–261Google Scholar
  7. 7.
    Itoh T, Fujii Y (1998) Recent Res Devel Pure Appl Chem 2:329–346Google Scholar
  8. 8.
    Williams NH, Takasaki B, Wall M, Chin J (1999) Acc Chem Res 32:485–493CrossRefGoogle Scholar
  9. 9.
    Kimura E (2000) Curr Opin Chem Biol 4:207–213CrossRefPubMedGoogle Scholar
  10. 10.
    Yashiro M, Ishikubo A, Komiyama M (1995) J Chem Soc Chem Commun 1793–1974Google Scholar
  11. 11.
    Yashiro M, Ishikubo A, Komiyama M (1997) J Chem Soc Chem Commun 83–84Google Scholar
  12. 12.
    Matsuda S, Ishikubo A, Kuzuya A, Yashiro M, Komiyama M (1998) Angew Chem Int Ed Eng 37:3284–3286CrossRefGoogle Scholar
  13. 13.
    Yashiro M, Kaneiwa H, Onaka K, Komiyama M (2004) Dalton Trans 605–610Google Scholar
  14. 14.
    Chapman WH Jr, Breslow R (1995) J Am Chem Soc 117:5462–5469Google Scholar
  15. 15.
    Koike T, Inoue M, Kimura E, Shiro M (1996) J Am Chem Soc 118:3091–3099CrossRefGoogle Scholar
  16. 16.
    Bazzicalupi C, Bencini A, Bianchi A, Fusi V, Giorgi C, Paoletti P, Valtancoli B, Zanchi D (1997) Inorg Chem 36:2784–2790CrossRefPubMedGoogle Scholar
  17. 17.
    Bazzicalupi C, Bencini A, Berni E, Bianchi A, Fedi V, Fusi V, Giorgi C, Paoletti P, Valtancoli B (1999) Inorg Chem 38:4115–4122CrossRefGoogle Scholar
  18. 18.
    Mikkola S, Wang Q, Jori Z, Helkearo M, Lönnberg H (1999) Acta Chem Scand 53:453–456Google Scholar
  19. 19.
    Molenveld P, Stikvoort WMG, Kooijman H, Spek AL, Engbersen JFJ, Reinhoudt DN (1999) J Org Chem 64:3896–3906CrossRefGoogle Scholar
  20. 20.
    Luiz MTB, Szpoganicz B, Rizzoto M, Basallote MG, Martell AE (1999) Inorg Chim Acta 287:134–141CrossRefGoogle Scholar
  21. 21.
    Kaminskaia NV, Spingler B, Lippard SJ (2000) J Am Chem Soc 122:6411–6422CrossRefGoogle Scholar
  22. 22.
    He C, Lippard SJ (2000) J Am Chem Soc 122:184–185CrossRefGoogle Scholar
  23. 23.
    Kaminskaia NV, Spingler B, Lippard SJ (2001) J Am Chem Soc 123:6555–6563CrossRefPubMedGoogle Scholar
  24. 24.
    Kanamori K, Yamamoto K, Okayasu T, Matsui N, Okamoto K, Mori W (1997) Bull Chem Soc Jpn 70:3031–3040Google Scholar
  25. 25.
    Epstein DM, Chappell LL, Khalili H, Supkowski RM, Horrocks WDeW Jr, Morrow JR (2000) Inorg Chem 39:2130–2134CrossRefPubMedGoogle Scholar
  26. 26.
    McCue KP, Morrow JR (1999) Inorg Chem 38:6136–6142CrossRefPubMedGoogle Scholar
  27. 27.
    Chappell LL, Voss DA Jr, Horrocks WDeW Jr, Morrow JR (1998) Inorg Chem 37:3989–3998CrossRefPubMedGoogle Scholar
  28. 28.
    Kady IO, Tan B, Ho Z, Scarborough T (1995) J Chem Soc Chem Commun 1137–1138Google Scholar
  29. 29.
    Scrimin P, Tecilla P, Tonellato U, Valle G, Veronese A (1995) J Chem Soc Chem Commun 1163–1164Google Scholar
  30. 30.
    Zhu S, Chen W, Lin H, Yin X, Kou F, Lin M, Chen Y (1997) Polyhedron 16:3285–3291CrossRefGoogle Scholar
  31. 31.
    Young MJ, Wahnon D, Hynes RC, Chin J (1995) J Am Chem Soc 117:9441–9447Google Scholar
  32. 32.
    Kimura E, Kodama Y, Koike T, Shiro M (1995) J Am Chem Soc 117:8304–8311Google Scholar
  33. 33.
    Gajda T, Jancsó A, Mikkola S, Lönnberg H, Sirges H (2002) J Chem Soc Dalton Trans 1757–1763Google Scholar
  34. 34.
    Gans P, Sabatini A, Vacca A (1996) Talanta 43:1739–1753CrossRefGoogle Scholar
  35. 35.
    Alderighi L, Gans P, Ienco A, Peters D, Sabatini A, Vacca A (1999) Coord Chem Rev 184:311–318CrossRefGoogle Scholar
  36. 36.
    Yashiro M, Higuchi M, Washizu Y, Komiyama M (2002) Bull Chem Soc Jpn 75:1844–1843Google Scholar
  37. 37.
    Yashiro M, Higuchi M, Komiyama M, Ishii Y (2003) Bull Chem Soc Jpn 76:1813–1817CrossRefGoogle Scholar
  38. 38.
    Oivanen M, Kuusela S, Lönnberg H (1998) Chem Rev 98:961–990CrossRefPubMedGoogle Scholar
  39. 39.
    Mikkola S, Stenman E, Nurmi K, Yousefi-Salakdeh E, Strömberg R, Lönnberg H (1999) J Chem Soc Perkin Trans 2 1619–1625Google Scholar
  40. 40.
    Liu S, Hamilton AD (1999) Chem Commun 587–588Google Scholar
  41. 41.
    Iranzo O, Kovalevsky AY, Morrow JR, Richard JP (2003) J Am Chem Soc 125:1988–1993CrossRefPubMedGoogle Scholar
  42. 42.
    Albedyhl S, Schnieders D, Jancsó A, Gajda T, Krebs B (2002) Eur J Inorg Chem 1400–1409Google Scholar
  43. 43.
    Fujioka H, Koike T, Yamada N, Kimura E (1996) Heterocycles 42:775–787Google Scholar
  44. 44.
    Jancsó A, Mikkola S, Lönnberg H, Hegetschweiler K, Gajda T (2003) Chem Eur J 9:5404–5415CrossRefGoogle Scholar
  45. 45.
    Good NE, Winget GD, Winter W, Connolly TN, Izawa S, Singh RMM (1966) Biochemistry 5:467–477PubMedGoogle Scholar

Copyright information

© SBIC 2004

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Faculty of EngineeringTokyo Polytechnic UniversityKanagawa Japan
  2. 2.Department of Chemistry and Biotechnology, Graduate School of EngineeringThe University of TokyoTokyo Japan

Personalised recommendations