JBIC Journal of Biological Inorganic Chemistry

, Volume 9, Issue 6, pp 691–705

Probing the reactivity of Ni in the active site of methyl-coenzyme M reductase with substrate analogues

  • Meike Goenrich
  • Felix Mahlert
  • Evert C. Duin
  • Carsten Bauer
  • Bernhard Jaun
  • Rudolf K. Thauer
Original Article

Abstract

Methyl-coenzyme M reductase (MCR) catalyses the reduction of methyl-coenzyme M (CH3-S-CoM) with coenzyme B (HS-CoB) to methane and CoM-S-S-CoB. It contains the nickel porphyrinoid F430 as prosthetic group which has to be in the Ni(I) oxidation state for the enzyme to be active. The active enzyme exhibits an axial Ni(I)-derived EPR signal MCR-red1. We report here on experiments with methyl-coenzyme M analogues showing how they affect the activity and the MCR-red1 signal of MCR from Methanothermobacter marburgensis. Ethyl-coenzyme M was the only methyl-coenzyme M analogue tested that was used by MCR as a substrate. Ethyl-coenzyme M was reduced to ethane (apparent KM=20 mM; apparent Vmax=0.1 U/mg) with a catalytic efficiency of less than 1% of that of methyl-coenzyme M reduction to methane (apparent KM=5 mM; apparent Vmax=30 U/mg). Propyl-coenzyme M (apparent Ki=2 mM) and allyl-coenzyme M (apparent Ki=0.1 mM) were reversible inhibitors. 2-Bromoethanesulfonate ([I]0.5 V=2 µM), cyano-coenzyme M ([I]0.5 V=0.2 mM), 3-bromopropionate ([I]0.5 V=3 mM), seleno-coenzyme M ([I]0.5 V=6 mM) and trifluoromethyl-coenzyme M ([I]0.5 V=6 mM) irreversibly inhibited the enzyme. In their presence the MRC-red1 signal was quenched, indicating the oxidation of Ni(I) to Ni(II). The rate of oxidation increased over 10-fold in the presence of coenzyme B, indicating that the Ni(I) reactivity was increased in the presence of coenzyme B. Enzyme inactivated in the presence of coenzyme B showed an isotropic signal characteristic of a radical that is spin coupled with one hydrogen nucleus. The coupling was also observed in D2O. The signal was abolished upon exposure of the enzyme to O2. 3-Bromopropanesulfonate ([I]0.5 V=0.1 µM), 3-iodopropanesulfonate ([I]0.5 V=1 µM), and 4-bromobutyrate also inactivated MCR. In their presence the EPR signal of MCR-red1 was converted into a Ni-based EPR signal MCR-BPS that resembles in line shape the MCR-ox1 signal. The signal was quenched by O2. 2-Bromoethanesulfonate and 3-bromopropanesulfonate, which both rapidly reacted with Ni(I) of MRC-red1, did not react with the Ni of MCR-ox1 and MCR-BPS. The Ni-based EPR spectra of both inactive forms were not affected in the presence of high concentrations of these two potent inhibitors.

Keywords

EPR spectroscopy Factor 430 Methanogenic archaea Methyl-coenzyme M reductase Nickel enzymes 

Abbreviations

BES

2-bromoethanesulfonate

BPS

3-bromopropanesulfonate

CH3-S-CoM

methyl-coenzyme M

HS-CoB

coenzyme B

HS-CoM

coenzyme M

MCR

methyl-coenzyme M reductase

MCR-ox

MCR exhibiting the EPR signals ox1, ox2 or ox3

MCR-red1

MCR exhibiting the EPR signals red1a, red1c or red1m

MCR-red1a

MCR-red1c or MCR-red1m after extensive washing by ultrafiltration in the absence of coenzyme M and methyl-coenzyme M

MCR-red1c

MCR-red1 in the presence of coenzyme M

MCR-red1m

MCR-red1 in the presence of methyl-coenzyme M

MCR-red2

MCR exhibiting both the red1 and red2 EPR signals

References

  1. 1.
    Wolfe RS (2004) ASM News 70:15–18Google Scholar
  2. 2.
    Thauer RK (1998) Microbiology 144:2377–2406PubMedGoogle Scholar
  3. 3.
    Goubeaud M, Schreiner G, Thauer RK (1997) Eur J Biochem 243:110–114CrossRefPubMedGoogle Scholar
  4. 4.
    Becker DF, Ragsdale SW (1998) Biochemistry 37:2639–2647CrossRefPubMedGoogle Scholar
  5. 5.
    Mahlert F, Grabarse W, Kahnt J, Thauer RK, Duin EC (2002a) J Biol Inorg Chem 7:101–112Google Scholar
  6. 6.
    Krüger M, Meyerdierks A, Glockner FO, Amann R, Widdel F, Kube M, Reinhardt R, Kahnt J, Bocher R, Thauer RK, Shima S (2003) Nature 426:878–881CrossRefPubMedGoogle Scholar
  7. 7.
    Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK (1997) Science 278:1457–1462CrossRefPubMedGoogle Scholar
  8. 8.
    Grabarse W, Mahlert F, Shima S, Thauer RK, Ermler U (2000) J Mol Biol 303:329–344CrossRefPubMedGoogle Scholar
  9. 9.
    Grabarse W, Mahlert F, Duin EC, Goubeaud M, Shima S, Thauer RK, Lamzin V, Ermler U (2001) J Mol Biol 309:315–330CrossRefPubMedGoogle Scholar
  10. 10.
    Grabarse W, Shima S, Mahlert F, Duin EC, Thauer RK, Ermler U (2001) Methyl-coenzyme M reductase. In: Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) Handbook of metalloproteins. Wiley, Chichester, pp 897–914Google Scholar
  11. 11.
    Jaun B, Pfaltz A (1986) J Chem Soc Chem Commun 1327–1329Google Scholar
  12. 12.
    Rospert S, Böcher R, Albracht SPJ, Thauer RK (1991) FEBS Lett 291:371–375CrossRefPubMedGoogle Scholar
  13. 13.
    Holliger C, Pierik AJ, Reijerse EJ, Hagen WR (1993) J Am Chem Soc 115:5651–5656Google Scholar
  14. 14.
    Finazzo C, Harmer J, Bauer C, Jaun B, Duin EC, Mahlert F, Goenrich M, Thauer RK, Van Doorslaer S, Schweiger A (2003) J Am Chem Soc 125:4988–4989PubMedGoogle Scholar
  15. 15.
    Finazzo C, Harmer J, Jaun B, Duin EC, Mahlert F, Thauer RK, Van Doorslaer S, Schweiger A (2003) J Biol Inorg Chem 8:586–593PubMedGoogle Scholar
  16. 16.
    Horng YC, Becker DF, Ragsdale SW (2001) Biochemistry 40:12875–12885CrossRefPubMedGoogle Scholar
  17. 17.
    Jaun B (1993) Methane formation by methanogenic bacteria: redox chemistry of coenzyme F430. In: Sigel H, Sigel A (eds) Metal ions in biological systems, vol XXXX. Dekker, New York, pp 287–337Google Scholar
  18. 18.
    Lin S-K, Jaun B (1992) Helv Chim Acta 75:1478–1490Google Scholar
  19. 19.
    Signor L, Knuppe C, Hug R, Schweizer B, Pfaltz A, Jaun B (2000) Chem Eur J 6:3508–3516CrossRefGoogle Scholar
  20. 20.
    Tada M, Masuzawa Y (1997) Chem Commun 2161–2162Google Scholar
  21. 21.
    Ghosh A, Wondimagegn T, Ryeng H (2001) Curr Opin Chem Biol 5:744–750CrossRefPubMedGoogle Scholar
  22. 22.
    Pelmenschikov V, Blomberg MR, Siegbahn PE, Crabtree RH (2002) J Am Chem Soc 124:4039–4049CrossRefPubMedGoogle Scholar
  23. 23.
    Pelmenschikov V, Siegbahn PE (2003) J Biol Inorg Chem 8:653–662CrossRefPubMedGoogle Scholar
  24. 24.
    Ahn Y, Krzycki JA, Floss HG (1991) J Am Chem Soc 113:4700–4701Google Scholar
  25. 25.
    Lin S-K, Jaun B (1991) Helv Chim Acta 74:1725–1738Google Scholar
  26. 26.
    Mahlert F, Bauer C, Jaun B, Thauer RK, Duin EC (2002b) J Biol Inorg Chem 7:500–513Google Scholar
  27. 27.
    Telser J, Horng YC, Becker DF, Hoffman BM, Ragsdale SW (2000) J Am Chem Soc 122:182–183CrossRefGoogle Scholar
  28. 28.
    Telser J, Davydov R, Horng YC, Ragsdale SW, Hoffman BM (2001) J Am Chem Soc 123:5853–5860CrossRefPubMedGoogle Scholar
  29. 29.
    Tang Q, Carrington PE, Horng YC, Maroney MJ, Ragsdale SW, Bocian DF (2002) J Am Chem Soc 124:13242–13256CrossRefPubMedGoogle Scholar
  30. 30.
    Singh K, Horng YC, Ragsdale SW (2003) J Am Chem Soc 125:2436–2443CrossRefPubMedGoogle Scholar
  31. 31.
    Piskorski R, Jaun B (2003) J Am Chem Soc 125:13120–13125CrossRefPubMedGoogle Scholar
  32. 32.
    Craft JL, Horng YC, Ragsdale SW, Brunold TC (2004) J Biol Inorg Chem 9:77–89CrossRefPubMedGoogle Scholar
  33. 33.
    Wasserfallen A, Nölling J, Pfister P, Reeve J, de Macario EC (2000) Int J Syst Evol Microbiol 50:43–53PubMedGoogle Scholar
  34. 34.
    Gunsalus RP, Romesser JA, Wolfe RS (1978) Biochemistry 17:2374–2377PubMedGoogle Scholar
  35. 35.
    Kobelt A, Pfaltz A, Ankel-Fuchs D, Thauer RK (1987) FEBS Lett 214:265–268CrossRefGoogle Scholar
  36. 36.
    Ellermann J, Hedderich R, Böcher R, Thauer RK (1988) Eur J Biochem 172:669–677PubMedGoogle Scholar
  37. 37.
    Rospert S, Voges M, Berkessel A, Albracht SPJ, Thauer RK (1992) Eur J Biochem 210:101–107PubMedGoogle Scholar
  38. 38.
    Rospert S, Linder D, Ellermann J, Thauer RK (1990) Eur J Biochem 194:871–877PubMedGoogle Scholar
  39. 39.
    Bonacker LG, Baudner S, Mörschel E, Böcher R, Thauer RK (1993) Eur J Biochem 217:587–595PubMedGoogle Scholar
  40. 40.
    Bradford MM (1976) Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  41. 41.
    Beinert H, Albracht SPJ (1982) Biochim Biophys Acta 683:245–277CrossRefPubMedGoogle Scholar
  42. 42.
    Schönheit P, Moll J, Thauer RK (1980) Arch Microbiol 127:59–65Google Scholar
  43. 43.
    Bonacker LG, Baudner S, Thauer RK (1992) Eur J Biochem 206:87–92PubMedGoogle Scholar
  44. 44.
    Reeve JN, Nölling J, Morgan RM, Smith DR (1997) J Bacteriol 179:5975–5986PubMedGoogle Scholar
  45. 45.
    Hedderich R, Thauer RK (1988) FEBS Lett 234:223–227CrossRefGoogle Scholar
  46. 46.
    Gunsalus RP, Wolfe RS (1978) FEMS Lett 3:191–193CrossRefGoogle Scholar
  47. 47.
    Wackett LP, Honek JF, Begley TP, Wallace V, Orme-Johnson WH, Walsh CT (1987) Biochemistry 26:6012–6018PubMedGoogle Scholar
  48. 48.
    Belay N, Daniels L (1988) Antonie van Leeuwenhoek J Microbiol Serol 54:113–125Google Scholar
  49. 49.
    Ellermann J, Rospert S, Thauer RK, Bokranz M, Klein A, Voges M, Berkessel A (1989) Eur J Biochem 184:63–68PubMedGoogle Scholar
  50. 50.
    Albracht SPJ, Ankel-Fuchs D, van der Zwaan JW, Fontijn RD, Thauer RK (1986) Biochim Biophys Acta 870:50–57CrossRefGoogle Scholar
  51. 51.
    Albracht SPJ, Ankel-Fuchs D, Böcher R, Ellermann J, Moll J, van der Zwaan JW, Thauer RK (1988) Biochim Biophys Acta 955:86–102CrossRefGoogle Scholar
  52. 52.
    Wackett LP, Honek JF, Begley TP, Shames SL, Niederhoffer EC, Hausinger RP, Orme-Johnson WH, Walsh C (1988) Methyl-S-coenzyme-M reductase: a nickel-dependent enzyme catalyzing the terminal redox step in methane biogenesis. In: Lancaster J Jr (ed) The bioinorganic chemistry of nickel. VCH, Weinheim, pp 249–274Google Scholar
  53. 53.
    Holliger C, Kengen SW, Schraa G, Stams AJ, Zehnder AJ (1992) J Bacteriol 174:4435–4443PubMedGoogle Scholar
  54. 54.
    Lin S-K (1992) Doctoral thesis, ETH, ZürichGoogle Scholar
  55. 55.
    Selmer T, Kahnt J, Goubeaud M, Shima S, Grabarse W, Ermler U, Thauer RK (2000) J Biol Chem 275:3755–3760CrossRefPubMedGoogle Scholar
  56. 56.
    Stubbe JA, van der Donk WA (1998) Chem Rev 98:705–762CrossRefPubMedGoogle Scholar
  57. 57.
    Wagner AF, Frey M, Neugebauer FA, Schafer W, Knappe J (1992) Proc Natl Acad Sci USA 89:996–1000PubMedGoogle Scholar
  58. 58.
    Knappe J, Wagner AF (2001) Adv Protein Chem 58:277–315CrossRefPubMedGoogle Scholar
  59. 59.
    Olson KD, Chmurkowska-Cichowlas L, McMahon CW, Wolfe RS (1992) J Bacteriol 174:1007–1012PubMedGoogle Scholar
  60. 60.
    Wondimagegn T, Ghosh A (2001) J Am Chem Soc 123:1543–1544CrossRefPubMedGoogle Scholar
  61. 61.
    Jaun B (1990) Helv Chim Acta 73:2209–2217Google Scholar
  62. 62.
    Craft JL, Horng YC, Ragsdale SW, Brunold TC (2004) J Am Chem Soc 126:4068–4069CrossRefPubMedGoogle Scholar
  63. 63.
    Duin EC, Signor L, Piskorski R, Mahlert F, Clay MD, Goenrich M, Thauer RK, Jaun B, Johnson MK (2004) J Biol Inorg Chem (in press)Google Scholar

Copyright information

© SBIC 2004

Authors and Affiliations

  • Meike Goenrich
    • 1
  • Felix Mahlert
    • 1
  • Evert C. Duin
    • 2
  • Carsten Bauer
    • 3
  • Bernhard Jaun
    • 3
  • Rudolf K. Thauer
    • 1
  1. 1.Max-Planck-Institut für Terrestrische Mikrobiologie and Laboratorium für Mikrobiologie, Fachbereich BiologiePhilipps-UniversitätMarburgGermany
  2. 2.Department of ChemistryAuburn UniversityUSA
  3. 3.Laboratorium für Organische ChemieEidgenössische Technische Hochschule ZürichZurichSwitzerland

Personalised recommendations