Advertisement

Spectroscopic investigation of the nickel-containing porphinoid cofactor F430. Comparison of the free cofactor in the +1, +2 and +3 oxidation states with the cofactor bound to methyl-coenzyme M reductase in the silent, red and ox forms

  • Evert C. Duin
  • Luca Signor
  • Rafal Piskorski
  • Felix Mahlert
  • Michael D. Clay
  • Meike Goenrich
  • Rudolf K. Thauer
  • Bernhard Jaun
  • Michael K. Johnson
Original Article

Abstract

Methyl-coenzyme M reductase (MCR) catalyzes the methane-forming step in methanogenic archaea. It contains the nickel porphinoid F430, a prosthetic group that has been proposed to be directly involved in the catalytic cycle by the direct binding and subsequent reduction of the substrate methyl-coenzyme M. The active enzyme (MCRred1) can be generated in vivo and in vitro by reduction from MCRox1, which is an inactive form of the enzyme. Both the MCRred1 and MCRox1 forms have been proposed to contain F430 in the Ni(I) oxidation state on the basis of EPR and ENDOR data. In order to further address the oxidation state of the Ni center in F430, variable-temperature, variable-field magnetic circular dichroism (VTVH MCD), coupled with parallel absorption and EPR studies, have been used to compare the electronic and magnetic properties of MCRred1, MCRox1, and various EPR silent forms of MCR, with those of the isolated penta-methylated cofactor (F430M) in the +1, +2 and +3 oxidation states. The results confirm Ni(I) assignments for MCRred1 and MCRred2 forms of MCR and reveal charge transfer transitions involving the Ni d orbitals and the macrocycle π orbitals that are unique to Ni(I) forms of F430. Ligand field transitions associated with S=1 Ni(II) centers are assigned in the near-IR MCD spectra of MCRox1-silent and MCR-silent, and the splitting in the lowest energy d–d transition is shown to correlate qualitatively with assessments of the zero-field splitting parameters determined by analysis of VTVH MCD saturation magnetization data. The MCD studies also support rationalization of MCRox1 as a tetragonally compressed Ni(III) center with an axial thiolate ligand or a coupled Ni(II)-thiyl radical species, with the reality probably lying between these two extremes. The reinterpretation of MCRox1 as a formal Ni(III) species rather than an Ni(I) species obviates the need to invoke a two-electron reduction of the F430 macrocyclic ligand on reductive activation of MCRox1 to yield MCRred1.

Keywords

Methyl-coenzyme M reductase Nickel enzymes Factor 430 Methanogenic archaea Magnetic circular dichroism spectroscopy 

Abbreviations

F430

cofactor 430

F430M

penta-methylated form of cofactor 430

Ni(I)F430M

F430M with the nickel atom in the +1 oxidation state

Ni(II)F430M

F430M with the nickel atom in the +2 oxidation state

Ni(III)F430M

F430M with the nickel atom in the +3 oxidation state

MCR

methyl-coenzyme M reductase

MCRox1

MCR exhibiting the MCR-ox1 EPR signal

MCRox1-silent

EPR silent form of MCR obtained from the MCRox1 form

MCRred1

MCR exhibiting the EPR signals red1c and/or red1m

MCRred1c

MCRred1 in the presence of coenzyme M

MCRred1m

MCRred1 in the presence of methyl-coenzyme M

MCRred2

MCR exhibiting both the red1 and red2 EPR signals

MCRred1-silent

EPR silent form of MCR obtained from the MCRred1 form

MCRsilent

EPR silent form of MCR

Notes

Acknowledgements

This work was supported by the Max-Planck-Gesellschaft (R.K.T), by the Fonds der Chemischen Industrie (R.K.T.), and by grants from the National Institutes of Health (GM60329 and GM62542 to M.K.J.), the National Science Foundation (MCB98008857 to M.K.J) and the Swiss National Science Foundation (20-66773 to L.S, R.P, B.J). M.G is a recipient of a scholarship of the Claussen-Simon-Stiftung. We thank Dr. Richard C. Conover for help in fitting the VHVT MCD saturation magnetization data and the reviewers for many insightful comments and suggestions.

Supplementary material

supp.pdf (373 kb)
(PDF 192 KB)

References

  1. 1.
    Thauer RK (1998) Microbiology 144:2377–2406PubMedGoogle Scholar
  2. 2.
    Pfaltz A, Jaun B, Fässler A, Eschenmoser A, Jaenchen R, Gilles HH, Diekert G, Thauer RK (1982) Helv Chim Acta 65:828–865Google Scholar
  3. 3.
    Färber G, Keller W, Kratky C, Jaun B, Pfaltz A, Spinner C, Kobelt A, Eschenmoser A (1991) Helv Chim Acta 74:697–716Google Scholar
  4. 4.
    Hamilton CL, Scott RA, Johnson MK (1989) J Biol Chem 264:11605–11613PubMedGoogle Scholar
  5. 5.
    Cheesman MR, Ankel-Fuchs D, Thauer RK, Thompson AJ (1989) Biochem J 260:613–616PubMedGoogle Scholar
  6. 6.
    Pfaltz A, Livingston DA, Jaun B, Diekert G, Thauer RK, Eschenmoser A (1985) Helv Chim Acta 68:1338–1358Google Scholar
  7. 7.
    Shiemke AK, Shelnutt JA, Scott RA (1989) J Biol Chem 264:11236–11245PubMedGoogle Scholar
  8. 8.
    Hamilton CL, Ma L, Renner MW, Scott RA (1991) Biochim Biophys Acta 1074:312–319CrossRefPubMedGoogle Scholar
  9. 9.
    Jaun B (1993) In: Sigel H, Sigel A (eds) Metal ions in biological systems. Marcel Dekker, New York, pp 287–337Google Scholar
  10. 10.
    Jaun B (1990) Helv Chim Acta 73:2209–2217Google Scholar
  11. 11.
    Goubeaud M, Schreiner G, Thauer RK (1997) Eur J Biochem 243:110–114PubMedGoogle Scholar
  12. 12.
    Mahlert F, Bauer C, Jaun B, Thauer RK, Duin EC (2002) J Biol Inorg Chem 7:500–513PubMedGoogle Scholar
  13. 13.
    Mahlert F, Grabarse W, Kahnt J, Thauer RK, Duin EC (2002) J Biol Inorg Chem 7:101–112 and 7:151Google Scholar
  14. 14.
    Duin EC (2004) In: Warren MJ, Smith A (eds) Tetrapyrroles: their birth, life and death. Landes Bioscience, Georgetown (in press)Google Scholar
  15. 15.
    Ragsdale SW (2003) In: Kadish KM, Smith KM, Guilard R (eds) Porphyrin handbook. Elsevier, San Diego, pp 205–228Google Scholar
  16. 16.
    Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK (1997) Science 278:1457–1462PubMedGoogle Scholar
  17. 17.
    Grabarse W, Mahlert F, Shima S, Thauer RK, Ermler U (2000) J Mol Biol 303:329–344PubMedGoogle Scholar
  18. 18.
    Grabarse W, Mahlert F, Duin EC, Goubeaud M, Shima S, Thauer RK, Lamzin V, Ermler U (2001) J Mol Biol 309:315–330PubMedGoogle Scholar
  19. 19.
    Grabarse W, Shima S, Mahlert F, Duin EC, Thauer RK, Ermler U (2001) In: Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) Handbook of metalloproteins. Wiley, Chichester, pp 897–914Google Scholar
  20. 20.
    Duin EC, Cosper NJ, Mahlert F, Thauer RK, Scott RA (2003) J Biol Inorg Chem 8:141–148CrossRefPubMedGoogle Scholar
  21. 21.
    Tang Q, Carrington PE, Horng YC, Maroney MJ, Ragsdale SW, Bocian DF (2002) J Am Chem Soc 124:13242–13256CrossRefPubMedGoogle Scholar
  22. 22.
    Telser J, Davydov R, Horng Y-C, Ragsdale SW, Hoffman BM (2001) J Am Chem Soc 123:5853–5860CrossRefPubMedGoogle Scholar
  23. 23.
    Telser J, Horng Y-C, Becker DF, Hoffman BM, Ragsdale SW (2000) J Am Chem Soc 122:182–183CrossRefGoogle Scholar
  24. 24.
    Finazzo C, Harmer J, Jaun B, Duin EC, Mahlert F, Thauer RK, Van Doorslaer S, Schweiger A (2003) J Biol Inorg Chem 8:586–593PubMedGoogle Scholar
  25. 25.
    Finazzo C, Harmer J, Bauer C, Jaun B, Duin EC, Mahlert F, Goenrich M, Thauer RK, Van Doorslaer S, Schweiger A (2003) J Am Chem Soc 125:4988–4989PubMedGoogle Scholar
  26. 26.
    Rospert S, Böcher R, Albracht SPJ, Thauer RK (1991) FEBS Lett 291:371–375PubMedGoogle Scholar
  27. 27.
    Piskorski R, Jaun B (2003) J Am Chem Soc 125:13120–13125CrossRefPubMedGoogle Scholar
  28. 28.
    Wasserfallen A, Nölling J, Pfister P, Reeve J, de Macario EC (2000) Int J Syst Evol Microbiol 50:43–53PubMedGoogle Scholar
  29. 29.
    Kobelt A, Pfaltz A, Ankel-Fuchs D, Thauer RK (1987) FEBS Lett 214:265–268Google Scholar
  30. 30.
    Ellermann J, Hedderich R, Böcher R, Thauer RK (1988) Eur J Biochem 172:669–677PubMedGoogle Scholar
  31. 31.
    Schönheit P, Moll J, Thauer RK (1980) Arch Microbiol 127:59–65Google Scholar
  32. 32.
    Rospert S, Linder D, Ellermann J, Thauer RK (1990) Eur J Biochem 194:871–877PubMedGoogle Scholar
  33. 33.
    Bonacker LG, Baudner S, Thauer RK (1992) Eur J Biochem 206:87–92PubMedGoogle Scholar
  34. 34.
    Bonacker LG, Baudner S, Mörschel E, Böcher R, Thauer RK (1993) Eur J Biochem 217:587–595PubMedGoogle Scholar
  35. 35.
    Jaun B, Pfaltz A (1986) J Chem Soc Chem Commun 1327–1329Google Scholar
  36. 36.
    Bradford MM (1976) Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  37. 37.
    Johnson MK (1988) In: Que L Jr (ed) Metal clusters in proteins. American Chemical Society, Washington, DC, pp 326–342Google Scholar
  38. 38.
    Thomson AJ, Cheesman MR, George SJ (1993) Methods Enzymol 226:199–232PubMedGoogle Scholar
  39. 39.
    Johnson MK (2000) In: Que L Jr (ed) Physical methods in bioinorganic chemistry. University Science Books, Sausalito, pp 233–285Google Scholar
  40. 40.
    Neese F, Solomon EI (1999) Inorg Chem 38:1847–1865CrossRefPubMedGoogle Scholar
  41. 41.
    Beinert H, Albracht SPJ (1982) Biochim Biophys Acta 683:245–277PubMedGoogle Scholar
  42. 42.
    Margerum DW, Anliker SL (1988) In: Lancaster JR Jr (ed) The bioinorganic chemistry of nickel. VCH Verlagsgesellschaft, Weinheim, Germany, pp 29–51Google Scholar
  43. 43.
    Salerno JC (1988) In: Lancaster JR Jr (ed) The bioinorganic chemistry of nickel. VCH Verlagsgesellschaft, Weinheim, Germany, pp 53–71Google Scholar
  44. 44.
    Renner MW, Fajer J (2001) J Biol Inorg Chem 6:823–830 and (2002) 7:352Google Scholar
  45. 45.
    Ma L (1993) PhD Thesis, University of Georgia, Athens, GA, USAGoogle Scholar
  46. 46.
    Knuppe K (1997) PhD Thesis, ETH Zürich, SwitzerlandGoogle Scholar
  47. 47.
    Busch DH (1966) Helv Chim Acta 174–182Google Scholar
  48. 48.
    Craft JL, Horng Y-C, Ragsdale SW, Brunold TC (2004) J Biol Inorg Chem 9:77–89CrossRefPubMedGoogle Scholar
  49. 49.
    Suh MP, Kim HK, Kim MJ, Oh KY (1992) Inorg Chem 31:3620–3625Google Scholar

Copyright information

© SBIC 2004

Authors and Affiliations

  • Evert C. Duin
    • 1
  • Luca Signor
    • 2
  • Rafal Piskorski
    • 2
  • Felix Mahlert
    • 3
  • Michael D. Clay
    • 4
  • Meike Goenrich
    • 3
  • Rudolf K. Thauer
    • 3
  • Bernhard Jaun
    • 2
  • Michael K. Johnson
    • 4
  1. 1.Department of Chemistry and BiochemistryAuburn UniversityAuburnUSA
  2. 2.Laboratorium für Organische ChemieETH ZürichZürichSwitzerland
  3. 3.Max-Planck-Institut für terrestrische Mikrobiologie and Laboratorium für Mikrobiologie, Fachbereich BiologiePhilipps-UniversitätMarburgGermany
  4. 4.Department of Chemistry and Center for Metalloenzyme StudiesUniversity of GeorgiaAthensUSA

Personalised recommendations