Structure–activity relationships in platinum–acridinylthiourea conjugates: effect of the thiourea nonleaving group on drug stability, nucleobase affinity, and in vitro cytotoxicity

  • Margaret C. Ackley
  • Colin G. Barry
  • Amanda M. Mounce
  • Michael C. Farmer
  • Beth-Erin Springer
  • Cynthia S. Day
  • Marcus W. Wright
  • Susan J. Berners-Price
  • Suzanne M. Hess
  • Ulrich BierbachEmail author
Original Article


The synthesis, cytotoxicity, and nucleoside binding of some platinum–acridinylthiourea conjugates derived from the prototypical compound [PtCl(en)(ACRAMTU)](NO3)2 {”PT-ACRAMTU”; en=ethane-1,2-diamine, ACRAMTU=1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea, protonated form} are reported. To establish structure–activity relationships within this class of compounds, systematic changes were made to the thiourea nonleaving group, which links the intercalator to platinum. Three new derivatives of ACRAMTU, one di-, one tri-, and one tetraalkylated, were generated, where the degree of alkylation indicates the number of alkyl groups attached to the SCN2 framework. Subsequent reaction of the tri- and tetraalkylated derivatives with activated [PtCl2(en)] yielded the corresponding platinum conjugates. The dialkylated thiourea gave an unstable complex, which was not included in the studies. The crystal structure of PT-ACRAMTU·MeOH has been determined. In the solid state, one axial position of the square-planar platinum coordination sphere is partially shielded by the bulky thiourea group, providing a strong rationale for the kinetic inertness of the compound. The cytotoxicity of the prototype, the two new conjugates, and cisplatin was assessed in ovarian (A2780, A2780/CP), lung (NCI-H460), and colon (RKO) cancer cell lines using clonogenic survival assays. The derivatives containing trialkylated thiourea groups showed activity similar or superior to cisplatin, with IC50 values in the low micromolar concentration range. The complex modified with the tetraalkylated (bulkiest) thiourea was significantly less active, possibly due to the greatly decreased rate of binding to nucleobase nitrogen (1H NMR spectroscopy), but was most efficient at overcoming cross resistance to cisplatin in A2780/CP. Possible consequences of the reported structural modifications for the mechanism of action of these agents are discussed.


Acridine Cytotoxicity DNA targeted Platinum Steric hindrance 





t-butyl carbamate




N 1-(2-aminoethyl)ethane-1,2-diamine




4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid




3-(trimethylsilyl)propionate, sodium salt



This work was supported by a Research Project Grant from the National Institutes of Health, R01 CA101880 (to U.B.). We thank Dr Junyong Zhang and Dr Lindsay Byrne (UWA) for their assistance with the NMR experiments. M.C.F. gratefully acknowledges support from the Richter International Fellowship program. We also thank Johnson Matthey PLC (Reading, UK) for a generous gift of potassium tetrachloroplatinate.

Supplementary material

Figure S1–S6

supp1.pdf (89 kb)
(PDF 90 KB)

Table S1–S6

supp2.pdf (72 kb)
(PDF 73 KB)


  1. 1.
    Baruah H, Rector CL, Monnier SM, Bierbach U (2002) Biochem Pharmacol 64:191–200CrossRefPubMedGoogle Scholar
  2. 2.
    Barry CG, Baruah H, Bierbach U (2003) J Am Chem Soc 125:9629–9637CrossRefPubMedGoogle Scholar
  3. 3.
    Baruah H, Bierbach U (2003) Nucleic Acids Res 31:4138–4146CrossRefPubMedGoogle Scholar
  4. 4.
    Martins ET, Baruah H, Kramarczyk J, Saluta G, Day CS, Kucera GL, Bierbach U (2001) J Med Chem 44:4492–4496CrossRefPubMedGoogle Scholar
  5. 5.
    Raulins NR (1973) In: Acheson RM (ed) The chemistry of heterocyclic compounds. Wiley, New York, pp 9–108Google Scholar
  6. 6.
    Dhara SC (1970) Indian J Chem 8:193–194Google Scholar
  7. 7.
    Krapcho AP, Kuell CS (1990) Synth Commun 20:2559–2564Google Scholar
  8. 8.
    Kerrison SJS, Sadler PJ (1978) J Magn Reson 31:321–325Google Scholar
  9. 9.
    Barry CG, Turney EC, Day CS, Saluta G, Kucera GL, Bierbach U (2002) Inorg Chem 41:7159–7169CrossRefPubMedGoogle Scholar
  10. 10.
    Okeya S, Fujiwara Y, Kawashima S, Hayashi Y, Isobe K, Nakamura Y, Shimomura H, Kushi Y (1992) Chem Lett 1823–1826Google Scholar
  11. 11.
    Bierbach U, Hambley TW, Farrell N (1998) Inorg Chem 37:708–716CrossRefGoogle Scholar
  12. 12.
    Friebolin H (1993) Basic one- and two-dimensional NMR spectroscopy. VCH, New York, pp 287–298Google Scholar
  13. 13.
    Walter W, Ruess K-P (1971) Liebigs Ann Chem 746:54–64Google Scholar
  14. 14.
    Martin GJ, Gouesnard JP, Dorie J, Rabiller C, Martin ML (1977) J Am Chem Soc 99:1381–1384Google Scholar
  15. 15.
    Sasaki H, Niimi S, Akiyama M, Tanaka T, Hazato A, Kurozumi S, Fukushima S, Fukushima M (1999) Cancer Res 59:3919–3922PubMedGoogle Scholar
  16. 16.
    Hector S, Bolanowska-Higdon W, Zdanowicz J, Hitt S, Pendyala L (2001) Cancer Chemother Pharmacol 48:398–406CrossRefPubMedGoogle Scholar
  17. 17.
    Jamieson ER, Lippard SJ (1999) Chem Rev 99:2467–2498CrossRefPubMedGoogle Scholar
  18. 18.
    Guo Z, Chen Y, Zang E, Sadler PJ (1997) J Chem Soc Dalton Trans 4107–4111Google Scholar
  19. 19.
    Reedijk J (1992) Inorg Chim Acta 200:873–881CrossRefGoogle Scholar

Copyright information

© SBIC 2004

Authors and Affiliations

  • Margaret C. Ackley
    • 1
  • Colin G. Barry
    • 1
  • Amanda M. Mounce
    • 2
  • Michael C. Farmer
    • 1
    • 3
  • Beth-Erin Springer
    • 1
  • Cynthia S. Day
    • 1
  • Marcus W. Wright
    • 1
  • Susan J. Berners-Price
    • 3
  • Suzanne M. Hess
    • 2
  • Ulrich Bierbach
    • 1
    Email author
  1. 1.Department of ChemistryWake Forest UniversityWinston-SalemUSA
  2. 2.Department of Radiation OncologyWake Forest University School of MedicineWinston-SalemUSA
  3. 3.School of Biomedical and Chemical SciencesThe University of Western AustraliaPerthAustralia

Personalised recommendations