JBIC Journal of Biological Inorganic Chemistry

, Volume 9, Issue 2, pp 145–151

Incorporation of either molybdenum or tungsten into formate dehydrogenase from Desulfovibrio alaskensis NCIMB 13491; EPR assignment of the proximal iron-sulfur cluster to the pterin cofactor in formate dehydrogenases from sulfate-reducing bacteria

  • Carlos D. Brondino
  • Mario C. G. Passeggi
  • Jorge Caldeira
  • Maria J. Almendra
  • Maria J. Feio
  • Jose J. G. Moura
  • Isabel Moura
Original Article


We report the characterization of the molecular properties and EPR studies of a new formate dehydrogenase (FDH) from the sulfate-reducing organism Desulfovibrio alaskensis NCIMB 13491. FDHs are enzymes that catalyze the two-electron oxidation of formate to carbon dioxide in several aerobic and anaerobic organisms. D. alaskensis FDH is a heterodimeric protein with a molecular weight of 126±2 kDa composed of two subunits, α=93±3 kDa and β=32±2 kDa, which contains 6±1 Fe/molecule, 0.4±0.1 Mo/molecule, 0.3±0.1 W/molecule, and 1.3±0.1 guanine monophosphate nucleotides. The UV-vis absorption spectrum of D. alaskensis FDH is typical of an iron-sulfur protein with a broad band around 400 nm. Variable-temperature EPR studies performed on reduced samples of D. alaskensis FDH showed the presence of signals associated with the different paramagnetic centers of D. alaskensis FDH. Three rhombic signals having g-values and relaxation behavior characteristic of [4Fe-4S] clusters were observed in the 5–40 K temperature range. Two EPR signals with all the g-values less than two, which accounted for less than 0.1 spin/protein, typical of mononuclear Mo(V) and W(V), respectively, were observed. The signal associated with the W(V) ion has a larger deviation from the free electron g-value, as expected for tungsten in a d1 configuration, albeit with an unusual relaxation behavior. The EPR parameters of the Mo(V) signal are within the range of values typically found for the slow-type signal observed in several Mo-containing proteins belonging to the xanthine oxidase family of enzymes. Mo(V) resonances are split at temperatures below 50 K by magnetic coupling with one of the Fe/S clusters. The analysis of the inter-center magnetic interaction allowed us to assign the EPR-distinguishable iron-sulfur clusters with those seen in the crystal structure of a homologous enzyme.


Electron paramagnetic resonance Formate dehydrogenase Magnetic interactions Molybdenum-containing enzymes Tungsten-containing enzymes 



aldehyde oxidoreductase


formate dehydrogenase


periplasmic nitrate reductase


sulfate-reducing bacteria


  1. 1.
    Hille R (1996) Chem Rev 96:2757–2816CrossRefGoogle Scholar
  2. 2.
    Johnson MK, Rees DC, Adams MWW (1996) Chem Rev 96:2817–2839CrossRefPubMedGoogle Scholar
  3. 3.
    Romão MJ, Knäblein J, Huber R, Moura JJG (1997) Prog Biophys Mol Biol 68:121–144CrossRefPubMedGoogle Scholar
  4. 4.
    Almendra MJ, Brondino CD, Gavel O, Pereira AS, Tavares P, Bursakov S, Duarte R, Caldeira J, Moura JJG, Moura I (1999) Biochemistry 38:16366–16372CrossRefPubMedGoogle Scholar
  5. 5.
    de Bok FAM, Hagedoorn PL, Silva PJ, Hagen WR, Schiltz E, Fritsche K, Stams E, Fritsche K, Stams AJM (2003) Eur J Biochem 270:2476–2485CrossRefPubMedGoogle Scholar
  6. 6.
    Costa C, Teixeira M, LeGall J, Moura JJG, Moura I (1997) J Biol Inorg Chem 2:198–208CrossRefGoogle Scholar
  7. 7.
    George GN, Costa C, Moura JJG, Moura I (1999) J Am Chem Soc 121:2625–2626CrossRefGoogle Scholar
  8. 8.
    Raaijmakers H, Teixeira S, Dias JM, Almendra MJ, Brondino CD, Moura I, Moura JJG, Romão MJ (2001) J Biol Inorg Chem 6:398–404CrossRefPubMedGoogle Scholar
  9. 9.
    Raaijmakers H, Macieira S, Dias JM, Teixeira S, Bursakov S, Huber R, Moura JJ, Moura I, Romao MJ (2002) Structure 10:1261–1272CrossRefPubMedGoogle Scholar
  10. 10.
    Dias JM, Than ME, Humm A, Huber R, Bourenkov GP, Bartunik HD, Bursakov S, Calvete J, Caldeira J, Carneiro C, Moura JJG, Moura I, Romão MJ (1999) Structure 7:65–77PubMedGoogle Scholar
  11. 11.
    Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC, Sun PD (1997) Science 275:1305–1308PubMedGoogle Scholar
  12. 12.
    Bursakov SA, Liu MY, Payne WJ, LeGall J, Moura I, Moura JJG (1995) Anaerobe 1:55–60Google Scholar
  13. 13.
    Khangulov SV, Gladyshev VN, Dismukes GC, Stadtman TC (1998) Biochemistry 37:3518–3528CrossRefPubMedGoogle Scholar
  14. 14.
    Feio MJ (2000) PhD thesis. University of Portsmouth, UKGoogle Scholar
  15. 15.
    Postgate JR, Kent HM, Robson RL, Chesshyre JA (1984) J Gen Microbiol 130:1597–1601PubMedGoogle Scholar
  16. 16.
    Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–273Google Scholar
  17. 17.
    Gremer L, Meyer O (1996) Eur J Biochem 238:862–866PubMedGoogle Scholar
  18. 18.
    Frunzke K, Heiss B, Meyer O, Zumft WG (1993) FEMS Microbiol Lett 113:241–246CrossRefGoogle Scholar
  19. 19.
    Atherton MM (1973) Electron spin resonance: theory and applications. Wiley, New YorkGoogle Scholar
  20. 20.
    Salikhov KM, Galeev RT, Voronkova VK, Yablokov YV, Legendziewicz J (1997) Appl Magn Reson 14:457–472Google Scholar
  21. 21.
    Stewart LJ, Bailey S, Bennet B, Charnock JM, Garner CD, McAlpine AS (2000) J Mol Biol 299:593–600CrossRefPubMedGoogle Scholar
  22. 22.
    Deaton JC, Solomon EI, Watt GD, Wetherbee PJ, Durfor CN (1987) Biochem Biophys Res Commun 149:424–430PubMedGoogle Scholar
  23. 23.
    Turner N, Barata B, Bray RC, Deistung J, Le Gall J (1987) Biochem J 243:755–761PubMedGoogle Scholar
  24. 24.
    Romão MJ, Archer M, Moura I, Moura JJG, LeGall J, Engh R, Schneider M, Hof P, Huber R (1995) Science 167:1170–1176Google Scholar
  25. 25.
    Barnard KR, Gable RW, Wedd AG (1997) J Biol Inorg Chem 2:623–633CrossRefGoogle Scholar
  26. 26.
    McAlpine AS, McEwan AG, Bailey S. (1998) J Mol Biol 275:613–623PubMedGoogle Scholar
  27. 27.
    Schneider F, Löwe J, Huber R, Schindelin H, Kisker C, Knäblein J (1996) J Mol Biol 263:53–69PubMedGoogle Scholar
  28. 28.
    Schindelin H, Kisker C, Hilton J, Rajagopalan KV, Rees DC (1996) Science 272:1615–1621PubMedGoogle Scholar
  29. 29.
    Abragam A (1961) The principles of nuclear magnetism. Oxford Univesity Press, OxfordGoogle Scholar
  30. 30.
    Hirchs DJ, Beck WF, Innes JB, Brudvig GW (1992) Biochemistry 31:532–541PubMedGoogle Scholar
  31. 31.
    Hirchs DJ, Beck WF, Lynch JB, Que L Jr, Brudvig GW (1992) J Am Chem Soc 114:7475–7481Google Scholar
  32. 32.
    Andrade SLA, Brondino CD, Feio MJ, Moura I, Moura JJG (2000) Eur J Biochem 267:2054–2061CrossRefPubMedGoogle Scholar
  33. 33.
    Caldeira J, Belle V, Asso M, Guigliarelli B, Moura I, Moura JJG, Bertrand P (2000) Biochemistry 39:2700–2707CrossRefPubMedGoogle Scholar
  34. 34.
    Bertrand P, Roger G, Gayda JP (1980) J Magn Reson 40:539–549Google Scholar
  35. 35.
    Pilbrow JR (1990) Transition ion electron paramagnetic resonance. Clarendon Press, OxfordGoogle Scholar
  36. 36.
    Gayda JP, Bertrand P, More C, Le Gall J, Cammack RC (1981) Biochem Biophys Res Commun 99:1265–1270PubMedGoogle Scholar

Copyright information

© SBIC 2004

Authors and Affiliations

  • Carlos D. Brondino
    • 1
    • 2
  • Mario C. G. Passeggi
    • 2
    • 3
  • Jorge Caldeira
    • 1
  • Maria J. Almendra
    • 1
  • Maria J. Feio
    • 4
    • 5
  • Jose J. G. Moura
    • 1
  • Isabel Moura
    • 1
  1. 1.REQUIMTE, Departamento de Química, Centro de Química Fisica e Biotecnologia, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  2. 2.Departamento de Física, Facultad de Bioquímica y Ciencias BiologicasUniversidad Nacional del LitoralSanta FeArgentina
  3. 3.Instituto de Desarrollo Tecnologico (UNL-CONICET)Santa FeArgentina
  4. 4.School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
  5. 5.Instituto de Bioquímica Vegetal y FotosíntesisCentro de Investigaciones Científicas Isla de la CartujaSevilleSpain

Personalised recommendations