Simulating large nuclear quantum mechanical corrections in hydrogen atom transfer reactions in metalloenzymes

  • Mats H. M. Olsson
  • Per E. M. Siegbahn
  • Arieh Warshel
Original Article

Abstract

The role of nuclear quantum mechanical effects in enzyme catalysis has recently attracted significant interest both from theoretical and experimental points of view. From a theoretical point of view, it is undoubtedly a challenge to try to account for the observed tunneling in the protein by microscopic simulations without adjustable parameters. One of the most spectacular examples of nuclear quantum mechanical effects is the reaction of lipoxygenase, which is characterized by a very large kinetic isotope effect and, thus, provides an excellent benchmark for simulation approaches. In the present study, we report a microscopic simulation of the large kinetic isotope effect in soybean lipoxygenase and its temperature dependence. This is, to the best of our knowledge, the first time that a very large nuclear quantum mechanical contribution to the activation free energy of a hydrogen atom transfer reaction and its temperature dependence have been evaluated by microscopic simulation. The simulation reproduces quite well the experimental kinetic information and the corresponding difference between the classical and quantum mechanical activation free energies for the H and D transfer reactions.

Keywords

Enzyme catalysis Hydrogen atom transfer reactions Lipoxygenase Metalloenzymes Nuclear quantum mechanical effects Kinetic isotope effect 

References

  1. 1.
    Wang SX, Mure M, Medzihradszky KF, Burlingame AL, Brown DE, Dooley DN, Klinman JP (1996) Science 273:1078–1084PubMedGoogle Scholar
  2. 2.
    Knapp MJ, Rickert K, Klinman JP (2001) J Am Chem Soc 124:3865–3874CrossRefGoogle Scholar
  3. 3.
    Lehnert N, Solomon EI (2003) J Biol Inorg Chem 8:294–305PubMedGoogle Scholar
  4. 4.
    Hwang J-K, Warshel A (1996) J Am Chem Soc 118:11751–11754CrossRefGoogle Scholar
  5. 5.
    Billeter SR, Webb SP, Agarwal PK, Iordanov T, Hammes-Schiffer S (2001) J Am Chem Soc 123:11262–11272CrossRefPubMedGoogle Scholar
  6. 6.
    Feierberg I, Luzhkov V, Aqvist J (2000) J Biol Chem 275:22657–22662CrossRefPubMedGoogle Scholar
  7. 7.
    Gao J, Truhlar DG (2002) Annu Rev Phys Chem 53:467–505CrossRefPubMedGoogle Scholar
  8. 8.
    Hwang J-K, Warshel A (1993) J Phys Chem 97:10053–10058Google Scholar
  9. 9.
    Hwang J-K, Chu ZT, Yadav A, Warshel A (1991) J Phys Chem 95:8445–8448Google Scholar
  10. 10.
    Parson WW, Warshel A (2001) Q Rev Biophys 34:563–679PubMedGoogle Scholar
  11. 11.
    Doll KM, Bender BR, Finke RG (2003) J Am Chem Soc 125:10877–10884CrossRefPubMedGoogle Scholar
  12. 12.
    Brash AR (1999) J Biol Chem 274:23682–23697CrossRefGoogle Scholar
  13. 13.
    Nelson MJ, Seitz SP (1994) Curr Opin Struct Biol 4:878–884PubMedGoogle Scholar
  14. 14.
    Borowski T, Broclawik E (2003) J Phys Chem B 107:4639–4646CrossRefGoogle Scholar
  15. 15.
    Kuznetsov AM, Ulstrup J (1999) Can J Chem 77:1085–1096CrossRefGoogle Scholar
  16. 16.
    Warshel A, Chu ZT (1990) J Chem Phys 93:4003–4015CrossRefGoogle Scholar
  17. 17.
    Gillan MJ (1987) J Phys Chem Solids 20:3621–3641CrossRefGoogle Scholar
  18. 18.
    Voth G, Chandler D, Miller W (1989) J Chem Phys 91:7749–7760CrossRefGoogle Scholar
  19. 19.
    Voth G (1996) Adv Chem Phys 93:135–218Google Scholar
  20. 20.
    Feynman R (1972) Statistical mechanics. Benjamin, New YorkGoogle Scholar
  21. 21.
    Lee FS, Chu ZT, Warshel A (1993) J Comp Chem 14:161–185Google Scholar
  22. 22.
    Chu ZT, Villa J, Strajbl M, Schutz CN, Shurki A, Warshel A (2000) MOLARIS, version beta 9.05Google Scholar

Copyright information

© SBIC 2004

Authors and Affiliations

  • Mats H. M. Olsson
    • 1
  • Per E. M. Siegbahn
    • 2
  • Arieh Warshel
    • 1
  1. 1.Chemistry Department, SGM 418University of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Physics, ALBANOVAStockholm UniversityStockholmSweden

Personalised recommendations