Bone tissue incorporates in vitro gallium with a local structure similar to gallium-doped brushite

Original Article


During mineral growth in rat bone-marrow stromal cell cultures, gallium follows calcium pathways. The dominant phase of the cell culture mineral constitutes the poorly crystalline hydroxyapatite (HAP). This model system mimics bone mineralization in vivo. The structural characterization of the Ga environment was performed by X-ray absorption spectroscopy at the Ga K-edge. These data were compared with Ga-doped synthetic compounds (poorly crystalline hydroxyapatite, amorphous calcium phosphate and brushite) and with strontium-treated bone tissue, obtained from the same culture model. It was found that Sr2+ substitutes for Ca2+ in the HAP crystal lattice. In contrast, the replacement by Ga3+ yielded a much more disordered local environment of the probe atom in all investigated cell culture samples. The coordination of Ga ions in the cell culture minerals was similar to that of Ga3+, substituted for Ca2+, in the Ga-doped synthetic brushite (Ga-DCPD). The Ga atoms in the Ga-DCPD were coordinated by four oxygen atoms (1.90 Å) of the four phosphate groups and two oxygen atoms at 2.02 Å. Interestingly, the local environment of Ga in the cell culture minerals was not dependent on the onset of Ga treatment, the Ga concentration in the medium or the age of the mineral. Thus, it was concluded that Ga ions were incorporated into the precursor phase to the HAP mineral. Substitution for Ca2+ with Ga3+ distorted locally this brushite-like environment, which prevented the transformation of the initially deposited phase into the poorly crystalline HAP.


Biomineralization Bone-marrow stromal cell culture Gallium X-ray absorption spectroscopy 



amorphous calcium phosphate


dicalcium phosphate dihydrate (brushite)




energy dispersive X-ray fluorescence


extended X-ray absorption fine structure


gallium-doped amorphous calcium phosphate


gallium-doped brushite


gallium-doped hydroxyapatite


X-ray absorption near edge structure


X-ray absorption spectroscopy


X-ray diffraction



M.K. is grateful for the support of the European Community – Improving the Human Research Potential and Social-Economic Knowledge Base Programme, Marie Curie Training Sites, contract number HPMT-CT-20000-00174 and of the European Community – Access to Research Infrastructure Action of the Improving Human Potential Programme to the EMBL Hamburg Outstation, contract number HPRI-CT-1999-00017. The authors wish to gratefully acknowledge the kind assistance of Dr. Bernd Hasse during data collection at beamline G3 of HASYLAB/DESY.

Supplementary material

supp.pdf (114 kb)
Supplementary material (PDF 115 KB)


  1. 1.
    Collery P, Keppler B, Madoulet C, Desoize B (2002) Crit Rev Oncol Hematol 42:283–296CrossRefPubMedGoogle Scholar
  2. 2.
    Hurtado J, Esbrit P (2002) Expert Opin Pharmacother 3:521–527PubMedGoogle Scholar
  3. 3.
    Bernstein LR (1998) Pharmacol Rev 50:665–682PubMedGoogle Scholar
  4. 4.
    Warrel RP Jr, Bockman RS, Coonley CJ, Isaacs M, Staszewski HJ (1984) J Clin Invest 73:1487–1490PubMedGoogle Scholar
  5. 5.
    Bockman RS, Repo MA, Warrel RP Jr, Pounds JG, Schidlovsky G, Gordon BM, Jones KW (1990) Proc Natl Acad Sci USA 87:4149–4153PubMedGoogle Scholar
  6. 6.
    Webster LK, Olver IN, Stokes KH, Sephton RG, Hillcoat BL, Bishop JF (2000) Cancer Chemother Pharmacol 45:55–58PubMedGoogle Scholar
  7. 7.
    Hall TJ, Chambers TJ (1990) Bone Miner 8:211–216PubMedGoogle Scholar
  8. 8.
    Blair HC, Teitelbaum SL, Tan HL, Schlesinger PH (1992) J Cell Biochem 48:401–410PubMedGoogle Scholar
  9. 9.
    Gruber HE, Norton HJ, Singer FR (1999) Miner Electrolyte Metab 25:127–134Google Scholar
  10. 10.
    Bockman RS, Guidon PT Jr, Pan LC, Salvatori R, Kawaguchi A (1993) J Cell Biochem 52:396–403PubMedGoogle Scholar
  11. 11.
    Jenis LG, Waud CE, Stein GS, Lian JB, Baran DT (1993) J Cell Biochem 52:330–336PubMedGoogle Scholar
  12. 12.
    Blumenthal NC, Cosma V, Levine S (1989) Calcif Tissue Int 45:81–87PubMedGoogle Scholar
  13. 13.
    Okamoto Y, Hidaka S (1994) J Biomed Mater Res 28:1403–1410PubMedGoogle Scholar
  14. 14.
    Bockman RS, Boskey AL, Blumenthal NC, Alcock NW, Warrel RP Jr (1986) Calcif Tissue Int 39:376–381PubMedGoogle Scholar
  15. 15.
    Satomura K, Nagayama M (1991) Acta Anat 142:97–104Google Scholar
  16. 16.
    Kondo H, Ohyama T, Ohya K, Kasugai S (1997) J Bone Miner Res 12:2089–2097PubMedGoogle Scholar
  17. 17.
    Rokita E, Korbas M, Mutsaers PHA, Tatoń G, de Voigt MJA (2001) Nucl Instrum Methods B 181:529–532CrossRefGoogle Scholar
  18. 18.
    Korbas M, Rokita E, Rokita H, Wróbel A (2002) Trace Elem Elec 19:109–113Google Scholar
  19. 19.
    Yamamoto A, Honma R, Sumita M (1998) J Biomed Mater Res 39:331–340CrossRefPubMedGoogle Scholar
  20. 20.
    Tung MS, Brown WE (1983) Calcif Tissue Int 35:783–790PubMedGoogle Scholar
  21. 21.
    Jensen AT, Rathlev J (1953) Inorg Synth 4:19–21Google Scholar
  22. 22.
    Pettifer RF, Hermes C (1985) J Appl Crystallogr 18:404–412CrossRefGoogle Scholar
  23. 23.
    Nolting H-F, Hermes C (1992) EXPROG: EMBL EXAFS data analysis and evaluation program package for PC/AT. European Molecular Biology Laboratory, c/o DESY, HamburgGoogle Scholar
  24. 24.
    Binsted N (1998) Computer program for EXAFS data analysis. CCLRC Daresbury Laboratory, UKGoogle Scholar
  25. 25.
    Gurman SJ, Binsted N, Ross I (1984) J Phys C 17:143–151Google Scholar
  26. 26.
    Rehr JJ, Albers RC (1990) Phys Rev B 41:8139–8149CrossRefGoogle Scholar
  27. 27.
    Barth U von, Hedin L (1972) J Phys C 5:1629–1642CrossRefGoogle Scholar
  28. 28.
    Hedin L, Lundqvist S (1969) In: Seitz F, Turnbull D, Ehrenreich H (eds) Solid state physics, vol. 23. Academic Press, New York, pp 2–181Google Scholar
  29. 29.
    Binsted N, Strange RW, Hasnain SS (1992) Biochemistry 31:12117–12125PubMedGoogle Scholar
  30. 30.
    Stern EA (1993) Phys Rev B 48:9825–9827Google Scholar
  31. 31.
    Nishi K, Shimizu K, Takamatsu M, Yoshida H, Satsuma A, Tanaka T, Yoshida S, Hattori T (1998) J Phys Chem B 102:10190–10195CrossRefGoogle Scholar
  32. 32.
    Curry NA, Jones DW (1971) J Chem Soc A 3725–3729Google Scholar
  33. 33.
    Mooney-Slater RCL (1966) Acta Crystallogr 20:526–534CrossRefGoogle Scholar
  34. 34.
    Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C (2001) Bone 28:446–453CrossRefPubMedGoogle Scholar
  35. 35.
    Kay MI, Young RA, Posner AS (1964) Nature 204:1050–1052PubMedGoogle Scholar
  36. 36.
    Wu LNY, Genge BR, Dunkelberger DG, LeGeros RZ, Concannon B, Wuthier RE (1997) J Biol Chem 272:4404–4411PubMedGoogle Scholar
  37. 37.
    Roberts JE, Bonar LC, Griffin RG, Glimcher MJ (1992) Calcif Tissue Int 50:42–48PubMedGoogle Scholar
  38. 38.
    Bigi A, Foresti E, Gandolfi M, Gazzano M, Roveri N (1995) J Inorg Biochem 58:49–58CrossRefGoogle Scholar
  39. 39.
    Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N (1996) Acta Crystallogr Sect B 52:87–92CrossRefGoogle Scholar
  40. 40.
    Åhman J, Svensson G, Albertson J (1996) Acta Crystallogr Sect C 52:1336–1338CrossRefGoogle Scholar
  41. 41.
    Rokita E, Mutsaers PHA, Quaedackers JA, Tatoń G, de Voigt MJA (1998) Nucl Instrum Methods B 139:180–185CrossRefGoogle Scholar
  42. 42.
    Abbona F, Baronnet A (1996) J Cryst Growth 165:98–105CrossRefGoogle Scholar

Copyright information

© SBIC 2004

Authors and Affiliations

  • M. Korbas
    • 1
    • 5
  • E. Rokita
    • 1
    • 2
  • W. Meyer-Klaucke
    • 3
  • J. Ryczek
    • 4
  1. 1.Institute of PhysicsJagiellonian UniversityKrakowPoland
  2. 2.Department of BiophysicsJagiellonian University School of MedicineKrakowPoland
  3. 3.EMBL Outstation Hamburg, c/o DESYHamburgGermany
  4. 4.Department of ChemistryPedagogical UniversityKrakowPoland
  5. 5.EMBL Outstation Hamburg, c/o DESYHamburgGermany

Personalised recommendations