Catalysis by methyl-coenzyme M reductase: a theoretical study for heterodisulfide product formation

Abstract

Hybrid density functional theory has been used to investigate the catalytic mechanism of methyl-coenzyme M reductase (MCR), an essential enzyme in methanogenesis. In a previous study of methane formation, a scheme was suggested involving oxidation of Ni(I) in the starting square-planar coordination to the high-spin Ni(II) form in the CoM-S-Ni(II)F430 octahedral intermediate. The methyl radical, concomitantly released by methyl-coenzyme M (CoM), is rapidly quenched by hydrogen atom transfer from the coenzyme B (CoB) thiol group, yielding methane as the first product of the reaction. The present investigation primarily concerns the second and final step of the reaction: oxidation of CoB and CoM to the CoB-S-S-CoM heterodisulfide product and reduction of nickel back to the Ni(I) square-planar form. The activation energy for the second step is found to be around 10 kcal/mol, implying that the first step of methane formation with an activation energy of 20 kcal/mol should be rate-limiting. An oxygen of the Gln147 residue, occupying the rear axial position in the oxidized Ni(II) state, is shown to stabilize the intermediate by 6 kcal/mol, thereby slightly decreasing the barrier for the preceding rate-limiting transition state. The mechanism suggested is discussed in the context of available experimental data. An analysis of the flexibility of the F430 cofactor during the reaction cycle is also given.

Keywords

Methyl-coenzyme M reductase F430 Catalytic mechanism Density functional theory 

References

  1. 1.
    Thauer RK (1998) Microbiology 144:2377–2406PubMedGoogle Scholar
  2. 2.
    Ellermann J, Hedderich R, Boecher R, Thauer RK (1988) Eur J Biochem 172:669–677PubMedGoogle Scholar
  3. 3.
    Bobik TA, Olson KD, Noll KM, Wolfe RS (1987) Biochem Biophys Res Commun 149:455–460PubMedGoogle Scholar
  4. 4.
    Thauer RK, Hedderich R, Fischer R (1993) In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York, pp 209–252Google Scholar
  5. 5.
    Becker DF, Ragsdale SW (1998) Biochemistry 37:2639–2647CrossRefPubMedGoogle Scholar
  6. 6.
    Cammack R (1997) Nature 390:443–444CrossRefPubMedGoogle Scholar
  7. 7.
    Ferry JG (1997) Science 278:1413–1414CrossRefPubMedGoogle Scholar
  8. 8.
    Heiden S, Hedderich R, Setzke E, Thauer RK (1993) Eur J Biochem 213:529–535PubMedGoogle Scholar
  9. 9.
    Setzke E, Hedderich R, Heiden S, Thauer RK (1994) Eur J Biochem 220:139–148PubMedGoogle Scholar
  10. 10.
    Deppenmeier U, Müller V, Gottschalk G (1996) Arch Microbiol 165:149–163CrossRefGoogle Scholar
  11. 11.
    Gunsalus RP, Wolfe RS (1978) FEMS Microbiol Lett 3:191–193CrossRefGoogle Scholar
  12. 12.
    Ellefson WL, Wolfe RS (1981) J Biol Chem 256:4259–4262PubMedGoogle Scholar
  13. 13.
    Pflatz A, Jaun B, Fässler A, Eschenmoser A, Jaenchen R, Gilles HH, Diekert G, Thauer RK (1982) Helv Chim Acta 65:828–865Google Scholar
  14. 14.
    Ermler U, Grabarse W, Shima S, Goubeard M, Thauer RK (1997) Science 278:1457–1462PubMedGoogle Scholar
  15. 15.
    Grabarse W, Mahlert F, Duin EC, Goubeard M, Shima S, Thauer RK, Lamzin V, Ermler U (2001) J Mol Biol 309:315–330PubMedGoogle Scholar
  16. 16.
    Grabarse W, Mahlert F, Shima S, Thauer RK, Ermler U (2000) J Mol Biol 303:329–344PubMedGoogle Scholar
  17. 17.
    Goubeaud M, Schreiner G, Thauer RK (1997) Eur J Biochem 243:110–114PubMedGoogle Scholar
  18. 18.
    Pelmenschikov V, Blomberg MRA, Siegbahn PEM, Crabtree RH (2002) J Am Chem Soc 124:4039–4049PubMedGoogle Scholar
  19. 19.
    Cha M, Shoner SC, Kovacs JA (1993) Inorg Chem 32:1860–1863Google Scholar
  20. 20.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefPubMedGoogle Scholar
  21. 21.
    Becke AD (1993) J Chem Phys 98:1372–1377Google Scholar
  22. 22.
    Becke AD (1993) J Chem Phys 98:5648–5652Google Scholar
  23. 23.
    Stevens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627Google Scholar
  24. 24.
    Schrödinger (1991–2000) Jaguar 4.0–4.2. Schrödinger, Portland, Ore., USAGoogle Scholar
  25. 25.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310CrossRefGoogle Scholar
  26. 26.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millan JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian, Pittsburgh, Pa., USAGoogle Scholar
  27. 27.
    Pelmenschikov V, Siegbahn PEM (2002) Inorg Chem 41:5659–5666CrossRefPubMedGoogle Scholar
  28. 28.
    Ghosh A, Wondimagegn T, Ryeng H (2001) Curr Opin Chem Biol 5:744–750PubMedGoogle Scholar
  29. 29.
    Todd LN, Zimmer M (2002) Inorg Chem (published on-line)Google Scholar
  30. 30.
    Renner MW, Fajer J (2001) J Biol Inorg Chem 6:823–830PubMedGoogle Scholar
  31. 31.
    Scheidt WR (2000) In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 3. Academic Press, New York, pp 49–112Google Scholar
  32. 32.
    Duin EC, Cosper NJ, Mahlert F, Thauer RK, Scott RA (2003) J Biol Inorg Chem 8:141–148CrossRefPubMedGoogle Scholar
  33. 33.
    Tang Q, Carrington PE, Horng Y-C, Maroney MJ, Ragsdale SW, Bocian DF (2002) J Am Chem Soc 124:13242–13256CrossRefPubMedGoogle Scholar
  34. 34.
    Singh K, Horng Y-C, Ragsdale SW (2003) J Am Chem Soc 125:2436–2443CrossRefPubMedGoogle Scholar
  35. 35.
    Telser J, Davydov R, Horng Y-C, Ragsdale SW, Hoffman BM (2001) J Am Chem Soc 123:5853–5860CrossRefPubMedGoogle Scholar
  36. 36.
    Himo F, Siegbahn PEM (2000) J Phys Chem B 104:7502–7509CrossRefGoogle Scholar
  37. 37.
    Cho K-B, Himo F, Gräslund A, Siegbahn PEM (2001) J Phys Chem B 105:6445–6452CrossRefGoogle Scholar
  38. 38.
    Shelnutt JA (2000) In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 7. Academic Press, Boston, p 167Google Scholar
  39. 39.
    Cheesman MR, Ankel-Fuchs D, Thauer RK, Thompson AJ (1989) Biochem J 260:613–616PubMedGoogle Scholar
  40. 40.
    Hamilton CL, Scott RA, Johnson MK (1989) J Biol Chem 264:11605–11613PubMedGoogle Scholar

Copyright information

© SBIC 2003

Authors and Affiliations

  1. 1.Department of Physics, Stockholm Center for Physics, Astronomy and Biotechnology (SCFAB)Stockholm UniversityStockholmSweden

Personalised recommendations