JBIC Journal of Biological Inorganic Chemistry

, Volume 8, Issue 7, pp 699–706 | Cite as

Resonance Raman spectroscopy of cytochrome c peroxidase variants that mimic manganese peroxidase

  • Manliang Feng
  • Hiroyasu Tachikawa
  • Xiaotang Wang
  • Thomas D. Pfister
  • Alan J. Gengenbach
  • Yi Lu
Original Article


Cytochrome c peroxidase (CcP) variants with an engineered Mn(II) binding site, including MnCcP [CcP(MI, G41E, V45E, H181D)], MnCcP(W191F), and MnCcP(W191F, W51F), that mimic manganese peroxidase (MnP), have been characterized by resonance Raman (RR) spectroscopy. Analysis of the Raman bands in the 200–700 cm−1 and 1300–1650 cm−1 regions indicates that both the coordination and spin state of the heme iron in the variants differ from that of CcP(MI), the recombinant yeast CcP containing additional Met-Ile residues at the N-terminus. At neutral pH the frequencies of the ν3 mode indicate that a pure five-coordinate heme iron exists in CcP(MI) whereas a six-coordinate low-spin iron is the dominant species in the CcP variants with the engineered Mn(II) binding site. The H181D mutation, which weakens the proximal linkage to the heme iron, may be responsible for these spectral and structural changes. Raman spectra of the variants CcP(MI, W191F) and CcP(MI, W191F, W51F) were also obtained to clarify the structural and functional roles of mutations at two tryptophan sites. The W51F mutation was found to disrupt H-bonding to the distal water molecules and the resulting variants tended to form transitional or mixed coordination states that possess spectral and structural features similar to that of MnP. Such structural features, with a loosened distal water, may facilitate the binding of H2O2 and increase the rate constant for compound I formation. This effect, in addition to the elimination of an H-bond to ferryl oxygen by the same mutation, accounts for the increased MnP specific activity of MnCcP(W191F, W51F).


Cytochrome c peroxidase Manganese peroxidase Raman spectroscopy Site-directed mutagenesis 



cytochrome c peroxidase


recombinant yeast CcP containing Met-Ile at the N-terminus in addition to the normal wild-type CcP sequence


horseradish peroxidase


CcP(MI, G41E, V45E, H181D)


CcP(MI, G41E, V45E, H181D, W191F)

MnCcP(W191F, W51F)

CcP(MI, G41E, V45E, H181D, W191F, W51F)


manganese peroxidase


resonance Raman


wild-type cytochrome c peroxidase

Supplementary material

supp.pdf (82 kb)
Supplementary material (PDF 83 KB)


  1. 1.
    Gold MH, Wariishi H, Valli K (1989) In: Whittaker JR, Sonnet PE (eds) Biocatalysis in agricultural biotechnology. American Chemical Society, Washington, pp 127–140Google Scholar
  2. 2.
    Gold M, Alic M (1993) Microbiol Rev 57:605–622PubMedGoogle Scholar
  3. 3.
    Bumpus JA, Aust SD (1987) Bioassays 6:166–170Google Scholar
  4. 4.
    Eaton DC (1985) Microb Technol 7:194–196Google Scholar
  5. 5.
    Paszczynski A, Crawford RL (1995) Biotechnol Prog 11:368–379Google Scholar
  6. 6.
    Sundaramoorthy M, Kishi K, Gold MH, Poulos TL (1994) J Biol Chem 269:32759–32767PubMedGoogle Scholar
  7. 7.
    Kuan I-C, Johnson KA, Tien M (1993) J Biol Chem 268:20064–20070PubMedGoogle Scholar
  8. 8.
    Sutherland GRJ, Zapanta LS, Tien M, Aust SD (1997) Biochemistry 36:3654–3662CrossRefPubMedGoogle Scholar
  9. 9.
    Kusters-van Someren M, Kishi K, Lundell T, Gold MH (1995) Biochemistry 34:10620–10627PubMedGoogle Scholar
  10. 10.
    Sundaramoorthy M, Kishi K, Gold MH, Poulos TL (1997) J Biol Chem 272:17574–17580CrossRefPubMedGoogle Scholar
  11. 11.
    Wariishi H, Valli K, Gold MH (1992) J Biol Chem 267:23688–23695PubMedGoogle Scholar
  12. 12.
    Kishi K, Kusters-van Someren M, Mayfield MB, Sun J, Loehr TM, Gold MH (1996) Biochemistry 35: 8986–8994CrossRefPubMedGoogle Scholar
  13. 13.
    Whitwam RE, Brown KR, Musick M, Natan MJ, Tien M (1997) Biochemistry 36:9766–9773CrossRefPubMedGoogle Scholar
  14. 14.
    Lu Y, Berry SM, Pfister TD (2001) Chem Rev 101:3047–3080CrossRefPubMedGoogle Scholar
  15. 15.
    Yeung BK, Wang X, Sigman JA, Petillo PA, Lu Y (1997) Chem Biol 4:215–221PubMedGoogle Scholar
  16. 16.
    Wilcox SK, Putman CD, Sastry M, Blankenship J, Chazin WJ, McRee DE, Goodin DB (1998) Biochemistry 37:16853–16862CrossRefPubMedGoogle Scholar
  17. 17.
    English AM, Tsaprailis G (1995) Adv Inorg Chem 43:79–125Google Scholar
  18. 18.
    Bosshard HR, Anni H, Yonetani T (1991) In: Everse J, Grisham MB (eds) Peroxidases in chemistry and biology II. CRC Press, Boca Raton, FL, pp 51–84Google Scholar
  19. 19.
    Erecinska M, Oshino N, Loh P, Brocklehurst E (1973) Biochim Biophys Acta 292:1–12CrossRefPubMedGoogle Scholar
  20. 20.
    Edwards SL, Xuong NH, Hamlin RC, Kraut J (1987) Biochemistry 26:1503–1511PubMedGoogle Scholar
  21. 21.
    Poulos TL, Fenna RE (1994) In: Sigel H, Sigel A (eds) Metal ions in biological systems, vol 30: metalloenzymes involving amino acid-residue and related radicals. Dekker, New York, pp 25–75Google Scholar
  22. 22.
    Finzel BC, Poulos TL, Kraut J (1984) J Biol Chem 259:13027–13036PubMedGoogle Scholar
  23. 23.
    Fishel LA, Villafranca JE, Mauro JM, Kraut J (1987) Biochemistry 26:351–360PubMedGoogle Scholar
  24. 24.
    Choudhury K, Poulos TL (1994) J Biol Chem 269:20239–20249PubMedGoogle Scholar
  25. 25.
    Goodin DB, Davison MG, Roe JA, Mauk AG, Smith M (1991) Biochemistry 30:4953–4962PubMedGoogle Scholar
  26. 26.
    Wang X, Lu Y (1999) Biochemistry 38: 9146–9157CrossRefPubMedGoogle Scholar
  27. 27.
    Gengenbach A, Syn S, Wang X, Lu Y (1999) Biochemistry 38:11425–11432CrossRefPubMedGoogle Scholar
  28. 28.
    Wang J, Caughey WS, Rousseau DL (1996) In: Feelisch M, Stamler JS (eds) Methods in nitric oxide research. Wiley, New York, pp 427–454Google Scholar
  29. 29.
    Tu AT (1982) Raman spectroscopy in biology: principles and applications. Wiley, New York, pp 331–337Google Scholar
  30. 30.
    Spiro TG, Smulevich G, Su C (1990) Biochemistry 29:4497–4508PubMedGoogle Scholar
  31. 31.
    Sievers G, Osterlund K, Ligands A (1979) Biochim Biophys Acta 581:1–14CrossRefPubMedGoogle Scholar
  32. 32.
    Ronnbeerg M, Osterlund K, Ellfolk N (1980) Biochim Biophys Acta 626:23–30PubMedGoogle Scholar
  33. 33.
    Smulevich G, Wang Y, Edwards SL, Poulos TL, English AM, Spiro TG (1990) Biochemistry 29:2586–2592PubMedGoogle Scholar
  34. 34.
    Reczek CM, Sitter AJ, Terner J (1989) J Mol Struct 214:27–41CrossRefGoogle Scholar
  35. 35.
    Smulevich G, Evangelista-Kirkup R, English A, Spiro TG (1986) Biochemistry 25:4426–4430PubMedGoogle Scholar
  36. 36.
    Smulevich G, Mauro JM, Fishel LA, English AM, Kraut J, Spiro TG (1988) Biochemistry 27:5486–5492PubMedGoogle Scholar
  37. 37.
    Smulevich G, Mauro JM, Fishel LA, English AM, Kraut J, Spiro TG (1988) Biochemistry 27:5477–5485PubMedGoogle Scholar
  38. 38.
    Smulevich G, Mantini AM, English AM, Mauro JM (1989) Biochemistry 28:5058–5064PubMedGoogle Scholar
  39. 39.
    Smulevich G, Wang Y, Mauro JM, Wang J, Fishel LA, Kraut J, Spiro TG (1990) Biochemistry 29:7174–7180PubMedGoogle Scholar
  40. 40.
    Smulevich G, Miller MA, Kraut J, Spiro TG (1991) Biochemistry 30:9546–9558PubMedGoogle Scholar
  41. 41.
    Dasgupta S, Rousseau DL, Anni H, Yonetani T (1989) J Biol Chem 264:654–662PubMedGoogle Scholar
  42. 42.
    Vitello LB, Huang M, Erman JE (1990) Biochemistry 29:4283–4288PubMedGoogle Scholar
  43. 43.
    Edwards SL, Poulos TL, Kraut J (1984) J Biol Chem 259:12984–12988PubMedGoogle Scholar
  44. 44.
    Poulos TL, Freer ST, Alden RA, Xuong NH, Edwards SL, Hamlin RC, Kraut J (1978) J Biol Chem 253:3730–3735PubMedGoogle Scholar
  45. 45.
    Wang J, Mauro M, Edwards SL, Oatley SJ, Fishel LA, Ashford VA, Xuong N, Kraut J (1990) Biochemistry 29:7160–7173PubMedGoogle Scholar
  46. 46.
    Kuan I-C, Johnson KA, Tien M (1993) J Biol Chem 268:20064–20070PubMedGoogle Scholar
  47. 47.
    Choi S, Spiro TG, Langry KC, Smith KM, Budd DL, La Mar GN (1982) J Am Chem Soc 104:4345–4351Google Scholar
  48. 48.
    Mino Y, Wariishi H, Blackburn NJ, Loehr TM, Gold MH (1988) J Biol Chem 263:7029–7036PubMedGoogle Scholar
  49. 49.
    Teraoka J, Kitagawa T (1981) J Biol Chem 256:3969–3977PubMedGoogle Scholar
  50. 50.
    Kishi K, Hildebrand DP, Kusters-van Someren M, Gettemy J, Mauk AG, Gold MH (1997) Biochemistry 36:4268–4277CrossRefPubMedGoogle Scholar
  51. 51.
    Yongs HL, Moenne-Loccoz P, Loehr TM, Gold MH (2000) Biochemistry 39:9994–10000Google Scholar
  52. 52.
    Keilin D, Hartree EF (1951) Biochem J 49:88–97Google Scholar
  53. 53.
    Strittmatter P, Velick SF (1956) J Biol Chem 221:253–264Google Scholar
  54. 54.
    Fishel LA, Farnum MF, Mauro JM, Miller MA, Kraut J, Liu Y, Tan X, Scholes CP (1991) Biochemistry 30:1986–1996PubMedGoogle Scholar
  55. 55.
    Goodin DB, Mauk AG, Smith M (1987) J Biol Chem 262:7719–7724PubMedGoogle Scholar
  56. 56.
    Mauro JM, Fishel LA, Hazzard JT, Meyer TE, Tollin G, Cusanovich MA, Kraut J (1988) Biochemistry 27:6243–6256PubMedGoogle Scholar
  57. 57.
    Erman JE, Vitello LB, Mauro JM, Kraut J (1989) Biochemistry 28:7992–7995PubMedGoogle Scholar
  58. 58.
    Sivaraja M, Goodin DB, Smith M, Hoffman BM (1989) Science 245:738–740PubMedGoogle Scholar
  59. 59.
    Pfister TD, Gengenbach AJ, Syn S, Lu Y (2001) Biochemistry 40:14942–14951CrossRefPubMedGoogle Scholar
  60. 60.
    Roe JA, Goodin DB (1993) J Biol Chem 268:20037–2045PubMedGoogle Scholar

Copyright information

© SBIC 2003

Authors and Affiliations

  • Manliang Feng
    • 1
  • Hiroyasu Tachikawa
    • 1
  • Xiaotang Wang
    • 1
  • Thomas D. Pfister
    • 2
  • Alan J. Gengenbach
    • 2
  • Yi Lu
    • 2
  1. 1.Department of ChemistryJackson State UniversityJacksonUSA
  2. 2.Departments of Chemistry and BiochemistryUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations