JBIC Journal of Biological Inorganic Chemistry

, Volume 8, Issue 3, pp 235–247 | Cite as

Examples of high-frequency EPR studies in bioinorganic chemistry

  • K. Kristoffer AnderssonEmail author
  • Peter P. Schmidt
  • Bettina Katterle
  • Kari R. Strand
  • Amy E. Palmer
  • Sang-Kyu Lee
  • Edward I. Solomon
  • Astrid Gräslund
  • Anne-Laure Barra


Low-temperature EPR spectroscopy with frequencies between 95 and 345 GHz and magnetic fields up to 12 T has been used to study metal sites in proteins or inorganic complexes and free radicals. The high-field EPR method was used to resolve g-value anisotropy by separating it from overlapping hyperfine couplings. The presence of hydrogen bonding interactions to the tyrosyl radical oxygens in ribonucleotide reductases were detected. At 285 GHz the g-value anisotropy from the rhombic type 2 Cu(II) signal in the enzyme laccase has its g-value anisotropy clearly resolved from slightly different overlapping axial species. Simple metal site systems with S>1/2 undergo a zero-field splitting, which can be described by the spin Hamiltonian \(H_{\rm s} = \beta SgB + D\left[ {S_z^{\rm 2} - S\left( {S + {\rm 1}} \right){\rm /3} + \left( {E{\rm /}D} \right)\left( {S_x^{\rm 2} - S_y^{\rm 2} } \right)} \right]\). From high-frequency EPR, the D values that are small compared to the frequency (high-field limit) can be determined directly by measuring the distance of the outermost signal to the center of the spectrum, which corresponds to (2S−1)* ∣D∣. For example, D values of 0.8 and 0.3 cm−1 are observed for S=5/2 Fe(III)-EDTA and transferrin, respectively. When D values are larger compared to the frequency and in the case of half-integer spin systems, they can be obtained from the frequency dependence of the shifts of g eff, as observed for myoglobin in the presence (D=5 cm−1) or absence (D=9.5 cm−1) of fluoride. The 285 and 345 GHz spectra of the Fe(II)-NO-EDTA complex show that it is best described as a S=3/2 system with D=11.5 cm−1, E=0.1 cm−1, and g x =g y =g z =2.0. Finally, the effects of HF-EPR on X-band EPR silent states and weak magnetic interactions are demonstrated.


High-field EPR Zero-field splitting Iron proteins Copper proteins Heme proteins 



High-field EPR measurements were carried out in the Grenoble High Magnetic Field Laboratory, CNRS-MPIF, supported by the EU TMR programme under contract no. ERBFMGECT950077 and the "Access to research infrastructure of the improving human potential programme". This work was partly financed by the Norwegian Research Council (K.K.A.), the Norwegian Cancer Society (K.K.A.), the EU TMR programme no. ERBMRFXCT980207 (K.K.A.), and ERBFMBICT 961892 (P.P.S.), NIH grant DK31450 (E.I.S.), and NIH grant GM40392 (E.I.S.), and the Swedish Research Council (A.G.). Prof. John D. Lipscomb (University of Minnesota) is thanked for providing samples for measurements and interesting suggestions. Profs. Patrick Bertrand (CNRS, UPR 9036, Marseille) and Joshua Telser (Roosevelt University, Chicago) are thanked for the use of figures and Høgni Weihe (University of Copenhagen) for the simulation program and Dr. Matthias Kolberg (University of Oslo) for fine suggestions. Prof. Britt-Marie Sjöberg (Stockholm University) is thanked for the use of the E. coli RNR-R2 samples in Fig. 2. Prof. Lawrence Que, Jr is thanked for constructive editing.


  1. 1.
    Barra AL, Brunel LC, Gatteschi D, Pardi L, Sessoli R (1998) Acc Chem Res 31:460–466CrossRefGoogle Scholar
  2. 2.
    Brunel LC (1996) Appl Magn Reson 11:417–423Google Scholar
  3. 3.
    Mobius K (1993) Appl Magn Reson 9:389–407Google Scholar
  4. 4.
    Borbat PP, Costa-Filho AJ, Earle KA, Moscicki JK, Freed JH (2001) Science 291:266–269CrossRefPubMedGoogle Scholar
  5. 5.
    Barra AL, Caneschi A, Gatteschi D, Sessoli R (1995) J Am Chem Soc 117:8855–8856Google Scholar
  6. 6.
    Barra AL, Gatteschi D, Sessoli R, Abbati GL, Cornia A, Fabretti AC, Uytterhoeven MG (1997) Angew Chem Int Ed Engl 36:2329–2331Google Scholar
  7. 7.
    Levanon H, Mobius K (1997) Annu Rev Biophys Biomol Struct 26:495–540CrossRefPubMedGoogle Scholar
  8. 8.
    Reijerse EJ, van Dam PJ, Klaassen AAK, Hagen WR, van Bentum PJM, Smith GM (1998) Appl Magn Reson 14:153–167Google Scholar
  9. 9.
    Tesler J, Pardi LA, Krzystek J, Brunel LC (1998) Inorg Chem 37:5769–5775CrossRefGoogle Scholar
  10. 10.
    van Dam PJ, Klaassen AAK, Reijerse EJ, Hagen WR (1998) J Magn Reson 130:140–144CrossRefPubMedGoogle Scholar
  11. 11.
    Lubitz W, Feher G (1999) Appl Magn Reson 17:1–48Google Scholar
  12. 12.
    Hagen WR (1999) Coord Chem Rev 192:209–229CrossRefGoogle Scholar
  13. 13.
    Krzystek J, Telser J, Pardi LA, Goldberg DP, Hoffman BM, Brunel LC (1999) Inorg Chem 38:6121–6129CrossRefPubMedGoogle Scholar
  14. 14.
    Bennati M, Farrar CT, Bryant JA, Inati SJ, Weis V, Gerfen GJ, Riggs-Gelasco P, Stubbe J, Griffin RG (1999) J Magn Reson 138:232–243CrossRefPubMedGoogle Scholar
  15. 15.
    Barnes JP, Liang ZC, Mchaourab HS, Freed JH, Hubbell WL (1999) Biophys J 76:3298–3306PubMedGoogle Scholar
  16. 16.
    Barra AL, Brunel LC, Baumann F, Schwach M, Moscherosch M, Kaim W (1999) J Chem Soc Dalton Trans 3855–3857Google Scholar
  17. 17.
    Arieli D, Vaughan DEW, Strohmaier KG, Thomann H, Bernardo M, Goldfarb D (1999) Magn Reson Chem 37:S43–S54CrossRefGoogle Scholar
  18. 18.
    Freed JH (2000) Annu Rev Phys Chem 51:655–689CrossRefPubMedGoogle Scholar
  19. 19.
    Bratt PJ, Poluektov OG, Thurnauer MC, Krzystek J, Brunel LC, Schrier J, Hsiao YW, Zerner M, Angerhofer A (2000) J Phys Chem B 104:6973–6977CrossRefGoogle Scholar
  20. 20.
    Mobius K (2000) Chem Soc Rev 29:129–139CrossRefGoogle Scholar
  21. 21.
    Barra AL, Gatteschi D, Sessoli R (2000) Chem Eur J 6:1608–1614CrossRefGoogle Scholar
  22. 22.
    DubocToia C, Hummel H, Bill E, Barra AL, Chouteau G, Wieghardt K (2000) Angew Chem Int Ed Engl 39:2888–2890CrossRefPubMedGoogle Scholar
  23. 23.
    Krzystek J, Telser J, Hoffman BM, Brunel LC, Licoccia S (2001) J Am Chem Soc 123:7890–7897CrossRefPubMedGoogle Scholar
  24. 24.
    Mossin S, Stefan M, ter Heerdt P, Bouwen A, Goovaerts E, Weihe H (2001) Appl Magn Reson 21:587–597Google Scholar
  25. 25.
    Gerfen GJ, Bellew BF, Un S, Bollinger JM, Stubbe J, Griffin RG, Singel DJ (1993) J Am Chem Soc 115:6420–6421Google Scholar
  26. 26.
    Andersson KK, Gräslund A (1995) Adv Inorg Chem 43:359–408Google Scholar
  27. 27.
    Sjöberg BM (1997) Struct Bonding 88:139–173Google Scholar
  28. 28.
    Jordan A, Reichard P (1998) Annu Rev Chem 67:71–98CrossRefGoogle Scholar
  29. 29.
    Stubbe J, Ge J, Yee CS (2001) Trends Biochem Sci 26:93–99CrossRefPubMedGoogle Scholar
  30. 30.
    Eklund H, Uhlin U, Färnegårdh M, Logan DT, Nordlund P (2001) Prog Biophys Mol Biol 77:177–268CrossRefGoogle Scholar
  31. 31.
    Lawrence CC, Bennati M, Obias HY, Bar G, Griffin RG, Stubbe J (1999) Proc Natl Acad Sci USA 96:8979–8984CrossRefPubMedGoogle Scholar
  32. 32.
    Kolberg M, Bleifuss G, Pötsch S, Gräslund A, Lubitz W, Lassmann G, Lendzian F (2000) J Am Chem Soc 122:9856–9857CrossRefGoogle Scholar
  33. 33.
    Albert Y, Couder Y, Tuchendler J, Thome H (1973) Biochim Biophys Acta 322:34–37PubMedGoogle Scholar
  34. 34.
    Gaffney BJ, Silverstone HJ (1993) Biol Magn Reson 13:1–55Google Scholar
  35. 35.
    Un S, Tang XS, Diner BA (1996) Biochemistry 35:679–684CrossRefPubMedGoogle Scholar
  36. 36.
    Bratt PJ, Rohrer M, Krzystek J, Evans MCW, Brunel LC, Angerhofer A (1997) J Phys Chem 101:9686–9689CrossRefGoogle Scholar
  37. 37.
    Calvo R, Isaacson RA, Paddock ML, Abresch EC, Okamura MY, Maniero AL, Brunel LC, Feher G (2001) J Phys Chem 105:4053–4057CrossRefGoogle Scholar
  38. 38.
    Lakshmi KV, Reifler MJ, Brudvig GW, Poluektov OG, Wagner AM, Thurnauer MC (2000) J Phys Chem B 104:10445–10448CrossRefGoogle Scholar
  39. 39.
    Un S, Dorlet P, Rutherford AW (2001) Appl Magn Reson 21:341–361Google Scholar
  40. 40.
    Smith GM, Riedi PC (2000) In: Atherton NM, Davies MJ, Gilbert BC (eds) Electron paramagnetic resonance, vol 17. Royal Society of Chemistry, Cambridge, pp 164–197Google Scholar
  41. 41.
    Muller F, Hopkins MA, Coron N, Grynberg M, Brunel LC, Martinez G (1989) Rev Sci Instrum 60:3681–3684CrossRefGoogle Scholar
  42. 42.
    Barra AL, Brunel LC, Robert JB (1990) Chem Phys Lett 165:107–109CrossRefGoogle Scholar
  43. 43.
    Manikandan P, Epel B, Goldfarb D (2001) Inorg Chem 40:781–787CrossRefPubMedGoogle Scholar
  44. 44.
    Allard P, Barra AL, Andersson KK, Schmidt PP, Atta M, Gräslund A (1996) J Am Chem Soc 118:895–896CrossRefGoogle Scholar
  45. 45.
    Un S, Atta M, Fontecave M, Rutherford AW (1995) J Am Chem Soc 117:10713–10719Google Scholar
  46. 46.
    Ivancich A, Mattioli TA, Un S (1999) J Am Chem Soc 121:5743–5753CrossRefGoogle Scholar
  47. 47.
    Un S, Gerez C, Elleingand E, Fontecave M (2001) J Am Chem Soc 123:3048–3054CrossRefPubMedGoogle Scholar
  48. 48.
    Schmidt PP, Andersson KK, Barra AL, Thelander L, Gräslund A (1996) J Biol Chem 271:23615–23618CrossRefPubMedGoogle Scholar
  49. 49.
    Schmidt PP, Schünemann V, Hanson MA, Katterle B, Gunnlaugsson PG, Barra AL, Sjöberg BM, Gräslund A, Solomon EI, Trautwein AX, Andersson KK (2003) J Am Chem Soc (in press)Google Scholar
  50. 50.
    Katterle B, Sahlin M, Schmidt PP, Pötsch S, Logan DT, Gräslund A, Sjöberg BM (1997) J Biol Chem 272:10414–10421CrossRefPubMedGoogle Scholar
  51. 51.
    van Dam PJ, Willems JP, Schmidt PP, Pötsch S, Barra AL, Hagen WR, Hoffman BM, Andersson KK, Gräslund A (1998) J Am Chem Soc 120:5080–5088CrossRefGoogle Scholar
  52. 52.
    Hanson MA, Schmidt PP, Strand KR, Gräslund A, Solomon EI, Andersson KK (1999) J Am Chem Soc 121:6755–6756CrossRefGoogle Scholar
  53. 53.
    Liu A, Pötsch S, Davydov A, Barra AL, Rubin H, Gräslund A (1998) Biochemistry 37:16369–16377CrossRefPubMedGoogle Scholar
  54. 54.
    Chabes A, Domkin V, Larsson G, Liu AM, Gräslund A, Wijmenga S, Thelander L (2000) Proc Natl Acad Sci USA 97:2474–2479CrossRefPubMedGoogle Scholar
  55. 55.
    Liu AM, Barra AL, Rubin H, Lu GZ, Gräslund A (2000) J Am Chem Soc 122:1974–1978CrossRefGoogle Scholar
  56. 56.
    Bar G, Bennati M, Nguyen HHT, Ge J, Stubbe J, Griffin RG (2001) J Am Chem Soc 123:3569–3576CrossRefPubMedGoogle Scholar
  57. 57.
    Ivancich A, Dorlet P, Goodin DB, Sun U (2001) J Am Chem Soc 123:5050–5058CrossRefPubMedGoogle Scholar
  58. 58.
    Bleifuss G, Kolberg M, Pötsch S, Hofbauer W, Bittl R, Lubitz W, Gräslund A, Lassmann G, Lendzian F (2001) Biochemistry 40:15362–15368CrossRefPubMedGoogle Scholar
  59. 59.
    Burdi D, Sturgeon BE, Tong WH, Stubbe J, Hoffman BM (1996) J Am Chem Soc 118:281–282CrossRefGoogle Scholar
  60. 60.
    Assarsson M, Andersson ME, Högbom M, Persson BO, Sahlin M, Barra AL, Sjöberg BM, Nordlund P, Gräslund A (2001) J Biol Chem 276:26852–26859CrossRefPubMedGoogle Scholar
  61. 61.
    Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563–2606PubMedGoogle Scholar
  62. 62.
    Sundaram UM, Zhang HH, Hedman B, Hodgson KO, Solomon EI (1997) J Am Chem Soc 117:12525–12540CrossRefGoogle Scholar
  63. 63.
    Andersson KK, Barra AL (2002) Spectrochim Acta A 58:1101–1112CrossRefGoogle Scholar
  64. 64.
    Messerschmidt A, Ladenstein R, Huber R, Bolognesi M, Avigliano L, Petruzzelli R, Rossi A, Finazziagro A (1992) J Mol Biol 224:179–205PubMedGoogle Scholar
  65. 65.
    van Gastel M, Canters GW, Krupka H, Messerschmidt A, de Waal EC, Warmerdam GCM, Groenen EJJ (2001) J Am Chem Soc 122:2322–2328Google Scholar
  66. 66.
    Berthold T, Bechtold M, Heinen U, Link G, Poluektov O, Utschig L, Tang J, Thurnauer MC, Kothe G (1999) J Phys Chem B 103:10733–10736CrossRefGoogle Scholar
  67. 67.
    Slutter CE, Gromov I, Epel B, Pecht I, Richards JH, Goldfarb D (2001) J Am Chem Soc 123:5325–5336CrossRefPubMedGoogle Scholar
  68. 68.
    Link G, Berthold T, Bechtold M, Weidner JU, Ohmes E, Tang J, Poluektov O, Utschig L, Schlesselman SL, Thurnauer MC, Kothe G (2001) J Am Chem Soc 123:4211–4222CrossRefPubMedGoogle Scholar
  69. 69.
    van Kan PJM, van der Horst E, Reijerse EJ, van Bentum PJM, Hagen WR (1998) J Chem Soc Faraday Trans 94:2975–2978CrossRefGoogle Scholar
  70. 70.
    Fann YC, Ong JL, Nocek JM, Hoffman BM (1995) J Am Chem Soc 117:6109–6116Google Scholar
  71. 71.
    Slappendel S, Veldink GA, Vliegenthart JFG, Aasa R, Malmström BG (1980) Biochim Biophys Acta 624:30–39PubMedGoogle Scholar
  72. 72.
    Hagen WR (1992) Adv Inorg Chem 38:165–221Google Scholar
  73. 73.
    Glerup J, Weihe H (1991) Acta Chem Scand 45:444–448Google Scholar
  74. 74.
    Jacobsen CJH, Perdersen E, Villadsen J, Weihe H (1993) Inorg Chem 32:1216–1221Google Scholar
  75. 75.
    Andersson KK, Barra AL (2001) J Inorg Biochem 86:124Google Scholar
  76. 76.
    Schmidt PP, Martinez A, Barra AL, Flatmark T, Andersson KK (1999) J Inorg Biochem 74:289Google Scholar
  77. 77.
    Pardi LA, Krzystek J, Telser J, Brunel LC (2000) J Magn Reson 146:375–378CrossRefPubMedGoogle Scholar
  78. 78.
    Barra AL, Andersson KK (2002) In: Grenoble High Magnetic Field Laboratory Annual Report 2001 (, p 73Google Scholar
  79. 79.
    Barra AL, Gräslund A, Andersson KK (2003) Biol Magn Reson (in press)Google Scholar
  80. 80.
    Arciero DM, Lipscomb JD, Huynh BH, Kent TA, Münck E (1983) J Biol Chem 24:14981–14991Google Scholar
  81. 81.
    Arciero DM, Lipscomb JD (1986) J Biol Chem 261:2170–2178PubMedGoogle Scholar
  82. 82.
    Orville AM, Chen VJ, Kriauciunas A, Harpel MR, Fox BG, Munck E, Lipscomb JD (1992) Biochemistry 31:4602–4612PubMedGoogle Scholar
  83. 83.
    Orville AM, Lipscomb JD (1993) J Biol Chem 268:8596–8607PubMedGoogle Scholar
  84. 84.
    Hauser C, Glaser T, Bill E, Weyhermüller T, Wieghardt K (2000) J Am Chem Soc 122:4352–4365CrossRefGoogle Scholar
  85. 85.
    Westcott BL, Enemark JH (1999) In: Solomon EI, Lever ABP (eds) Inorganic electronic structure and spectroscopy, vol II. Wiley, New York, pp 403–450Google Scholar
  86. 86.
    Brown CA, Pavlosky MA, Westre TE, Zhang Y, Hedman B, Hodgson KO, Solomon EI (1995) J Am Chem Soc 117:715–732Google Scholar
  87. 87.
    Lynch WB, Boorse RS, Freed JH (1993) J Am Chem Soc 115:10909–10915Google Scholar
  88. 88.
    Schmidt PP, Toft KG, Skotland T, Andersson KK (2002) J Biol Inorg Chem 7:225–240CrossRefPubMedGoogle Scholar
  89. 89.
    Wood RM, Stucker DM, Jones LM, Lynch WB, Misra SK, Freed JH (1999) Inorg Chem 38:5384–5388CrossRefGoogle Scholar
  90. 90.
    Bellew BF, Halkides CJ, Gerfen GJ, Griffin RG, Singel DJ (1996) Biochemistry 35:12186–12193CrossRefPubMedGoogle Scholar
  91. 91.
    Policar C, Knupling M, Frapart YM, Un S (1998) J Phys Chem 102:10391–10398CrossRefGoogle Scholar
  92. 92.
    Un S, Dorlet P, Voyard G, Tabares LC, Cortez N (2001) J Am Chem Soc 123:10123–10124CrossRefPubMedGoogle Scholar
  93. 93.
    Goldberg DP, Telser J, Montalban AG, Brunel LC, Barrett AGM, Hoffman BM (1997) J Am Chem Soc 119:8722–8723CrossRefGoogle Scholar
  94. 94.
    Krzystek J, Pardi LA, Brunel LC, Goldberg DP, Hoffman BM, Licoccia S, Telser J (2002) Spectrochim Acta A 58:1113–1127CrossRefGoogle Scholar
  95. 95.
    Knapp MJ, Krzystek J, Brunel LC, Hendrickson DN (2000) Inorg Chem 39:281–288CrossRefPubMedGoogle Scholar
  96. 96.
    Fournel A, Gambarelli S, Guigliarelli B, More C, Asso M, Chouteau G, Hille R, Bertrand P (1998) J Chem Phys 24:10905–10913CrossRefGoogle Scholar
  97. 97.
    Käss H, MacMillan F, Ludwig B, Prisner TF (2000) J Phys Chem B 104:5362–5371CrossRefGoogle Scholar
  98. 98.
    Hofbauer W, Zouni A, Bittl R, Kern J, Orth P, Lendzian F, Fromme P, Witt HT, Lubitz W (2001) Proc Natl Acad Sci USA 98:6623–6629CrossRefPubMedGoogle Scholar
  99. 99.
    Calvo R, Abresch EC, Bittl R, Feher G, Hofbauer W, Isaacson RA, Lubitz W, Okamura MY, Paddock ML (2000) J Am Chem Soc 122:7327–7341CrossRefGoogle Scholar
  100. 100.
    van Gastel M, Boulanger MJ, Canters GW, Huber M, Murphy MEP, Verbeet MP, Groenen EJJ (2001) J Phys Chem B 105:2236–2243CrossRefGoogle Scholar
  101. 101.
    Zech SG, Hofbauer W, Kamlowski A, Fromme P, Stehlik D, Lubitz W, Bittl R (2000) J Phys Chem B 104:9728–9739CrossRefGoogle Scholar
  102. 102.
    Manikandan P, Carmieli R, Shane T, Kalb AJ, Goldfarb, D (2000) J Am Chem Soc 122:3488–3494CrossRefGoogle Scholar

Copyright information

© SBIC 2003

Authors and Affiliations

  • K. Kristoffer Andersson
    • 1
    Email author
  • Peter P. Schmidt
    • 1
    • 5
  • Bettina Katterle
    • 1
    • 5
  • Kari R. Strand
    • 1
  • Amy E. Palmer
    • 2
  • Sang-Kyu Lee
    • 2
    • 6
  • Edward I. Solomon
    • 2
  • Astrid Gräslund
    • 3
  • Anne-Laure Barra
    • 4
  1. 1.Department of BiochemistryUniversity of OsloOsloNorway
  2. 2.Department of ChemistryStanford UniversityStanford, CA 94305-5080USA
  3. 3.Department of and Biochemistry and BiophysicsStockholm UniversityStockholmSweden
  4. 4.High Magnetic Field LaboratoryCNRS/MPI GrenobleFrance
  5. 5.Max-Planck-Institut für Strahlenchemie/Radiation ChemistryMulheim an der RuhrGermany
  6. 6.Genencor InternationalPalo Alto, CA 94304-1013USA

Personalised recommendations