Advertisement

Influence of sarcopenia on bone health parameters in a group of eumenorrheic obese premenopausal women

  • Emneh Hammoud
  • Hechmi Toumi
  • Christophe Jacob
  • Antonio Pinti
  • Eric Lespessailles
  • Rawad El HageEmail author
Original Article

Abstract

Introduction

The aim of this study was to compare bone mineral density (BMD) and geometric indices of hip bone strength in a group of obese sarcopenic premenopausal women (n = 27) and a group of obese premenopausal women with normal appendicular lean mass (ALM)/body mass index ratio (BMI) (n = 26).

Materials and methods

The ALM/BMI criterion of The Foundation for the National Institute of Health was used; women with an ALM/BMI ratio < 0.512 m2 were considered obese sarcopenic. Body composition and bone variables were measured by DXA. DXA measurements were completed for the whole body (WB), lumbar spine (L1–L4), total hip (TH) and femoral neck (FN). Hip geometry parameters including cross-sectional area (CSA), cross-sectional moment of inertia (CSMI), section modulus (Z), strength index (SI) and buckling ratio (BR) were derived by DXA.

Results

Age, weight and BMI were not significantly different between the two groups. Height, lean mass, skeletal muscle mass index, ALM and the ratio ALM/BMI were significantly higher in obese women with normal ALM/BMI ratio compared to obese sarcopenic women. Fat mass percentage was significantly higher in obese sarcopenic women compared to obese women with normal ALM/BMI ratio. WB BMC, TH BMD, FN BMD, CSA, CSMI and Z were significantly higher in obese women with normal ALM/BMI ratio compared to obese sarcopenic women. In the whole population (n = 53), ALM and the ratio ALM/BMI were positively correlated to WB BMC, CSA, CSMI and Z.

Conclusion

The present study suggests that sarcopenia negatively influences bone mineral density and hip geometry parameters before menopause in eumenorrheic obese women.

Keywords

Fat mass excess Prevention of osteoporosis Hip bone strength Women Sarcopenia 

Notes

Compliance with ethical standards

Conflict of interest

All authors have no conflicts of interest.

References

  1. 1.
    De Luca M, Angrisani L, Himpens J, Busetto L, Scopinaro N, Weiner R, Sartori A, Stier C, Lakdawala M, Bhasker AG, Buchwald H, Dixon J, Chiappetta S, Kolberg HC, Frühbeck G, Sarwer DB, Suter M, Soricelli E, Blüher M, Vilallonga R, Sharma A, Shikora S (2016) Indications for surgery for obesity and weight-related diseases: position statements from the International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO). Obes Surg 26:1659–1696PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    World health organization (2000) Obesity: preventing and managing the global epidemic. WHO technical report series, GenevaGoogle Scholar
  3. 3.
    López-Gómez JJ, Pérez Castrillón JL, de Luis Román DA (2016) Impact of obesity on bone metabolism. Endocrinol Nutr 63:551–559PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    El Hage R, Baddoura R (2012) Anthropometric predictors of geometric indices of hip bone strength in a group of Lebanese postmenopausal women. J Clin Densitom 15:191–197PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    El Hage R, Bachour F, Sebaaly A, Issa M, Zakhem E, Maalouf G (2014) The influence of weight status on radial bone mineral density in Lebanese women. Calcif Tissue Int 94:465–467PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    El Hage R, Theunynck D, Rocher E, Baddoura R (2014) Geometric indices of hip bone strength in overweight and control elderly men. J Med Liban 62:150–155PubMedPubMedCentralGoogle Scholar
  7. 7.
    El Hage R, Bachour F, Khairallah W, Bedran F, Maalouf N, Zakhem E, Issa M, Adib G, Maalouf G (2014) The influence of obesity and overweight on hip bone mineral density in Lebanese women. J Clin Densitom 17:216–217PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Premaor MO, Pilbrow L, Tonkin C, Parker RA, Compston J (2010) Obesity and fractures in postmenopausal women. J Bone Miner Res 25:292–297PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S, Pfeilschifter J, Silverman S, Díez-Pérez A, Lindsay R, Saag KG, Netelenbos JC, Gehlbach S, Hooven FH, Flahive J, Adachi JD, Rossini M, Lacroix AZ, Roux C, Sambrook PN, Siris ES, Glow Investigators (2011) Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med 124:1043–1050PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Cawsey S, Padwal R, Sharma AM, Wang X, Li S, Siminoski K (2015) Women with severe obesity and relatively low bone mineral density have increased fracture risk. Osteoporos Int 26:103–111PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Kim KC, Shin DH, Lee SY, Im JA, Lee DC (2010) Relation between obesity and bone mineral density and vertebral fractures in Korean postmenopausal women. Yonsei Med J 51:857–863PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Hammoud E, Toumi H, Jacob C, Pinti A, Lespessailles E, El Hage R (2019) Does the severity of obesity influence bone mineral density values in premenopausal women? J Clin Densitom.  https://doi.org/10.1016/j.jocd.2019.04.006 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tomlinson DJ, Erskine RM, Morse CI, Onambélé GL (2019) Body fat percentage, body mass index, fat mass index and the ageing bone: their singular and combined roles linked to physical activity and diet. Nutrients 11(1):195PubMedCentralCrossRefGoogle Scholar
  14. 14.
    Stenholm S, Alley D, Bandinelli S, Griswold ME, Koskinen S, Rantanen T, Guralnik JM, Ferrucci L (2009) The effect of obesity combined with low muscle strength on decline in mobility in older persons: results from the InCHIANTI study. Int J Obes (Lond) 33:635–644CrossRefGoogle Scholar
  15. 15.
    Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M, Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2 (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48:16–31PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RD (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147:755–763PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    McLean RR, Kiel DP (2015) Developing consensus criteria for sarcopenia: an update. J Bone Miner Res 30:588–592PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Rossi AP, Rubele S, D’Introno A, Zoico E, Brandimarte P, Amadio G, Nori N, Gnerre P, Mazzali G, Fantin F, Zamboni M (2018) An update on methods for sarcopenia diagnosis: from bench to bedside. Ital J Med 12:97–107CrossRefGoogle Scholar
  19. 19.
    Wong RMY, Wong H, Zhang N, Chow SKH, Chau WW, Wang J, Chim YN, Leung KS, Cheung WH (2019) The relationship between sarcopenia and fragility fracture—a systematic review. Osteoporos Int 30:541–553PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Prado CM, Wells JC, Smith SR, Stephan BC, Siervo M (2012) Sarcopenic obesity: a critical appraisal of the current evidence. Clin Nutr 31:583–601PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Molino S, Dossena M, Buonocore D, Verri M (2016) Sarcopenic obesity: an appraisal of the current status of knowledge and management in elderly people. J Nutr Health Aging 20:780–788PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Ho-Pham LT, Nguyen UD, Nguyen TV (2014) Association between lean mass, fat mass, and bone mineral density: a meta-analysis. J Clin Endocrinol Metab 99:30–38PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Kim JH, Hong AR, Choi HJ, Ku EJ, Lee JH, Cho NH, Shin CS (2018) Defining sarcopenia in terms of skeletal health. Arch Osteoporos 13:100PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Scott D, Seibel M, Cumming R, Naganathan V, Blyth F, Le Couteur DG, Handelsman DJ, Waite LM, Hirani V (2017) Sarcopenic obesity and its temporal associations with changes in bone mineral density, incident falls, and fractures in older men: the concord health and ageing in men project. J Bone Miner Res 32:575–583PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    He H, Liu Y, Tian Q, Papasian CJ, Hu T, Deng HW (2016) Relationship of sarcopenia and body composition with osteoporosis. Osteoporos Int 27:473–482PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Faria S, Faria O, Cardeal M, Gouvea H (2017) Sarcopenia prevalence among clinically severe obese patients in the preoperative stage of bariatric surgery. Surg Obes Relat Dis 13:S97–S98CrossRefGoogle Scholar
  27. 27.
    Dufour AB, Hannan MT, Murabito JM, Kiel DP, McLean RR (2013) Sarcopenia definitions considering body size and fat mass are associated with mobility limitations: the Framingham Study. J Gerontol A Biol Sci Med Sci 68:168–174PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Cauley JA (2015) An overview of sarcopenic obesity. J Clin Densitom 18:499–505PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Laurent MR, Dedeyne L, Dupont J, Mellaerts B, Dejaeger M, Gielen E (2019) Age-related bone loss and sarcopenia in men. Maturitas 122:51–56PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Spira D, Buchmann N, Nikolov J, Demuth I, Steinhagen-Thiessen E, Eckardt R, Norman K (2015) Association of low lean mass with frailty and physical performance: a comparison between two operational definitions of sarcopenia-data from the Berlin aging study II (BASE-II). J Gerontol A Biol Sci Med Sci 70:779–784PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Scott D, Shore-Lorenti C, McMillan L, Mesinovic J, Clark RA, Hayes A, Sanders KM, Duque G, Ebeling PR (2018) Associations of components of sarcopenic obesity with bone health and balance in older adults. Arch Gerontol Geriatr 75:125–131PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Cherin P, Voronska E, Fraoucene N, de Jaeger C (2014) Prevalence of sarcopenia among healthy ambulatory subjects: the sarcopenia begins from 45 years. Aging Clin Exp Res 26:137–146PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Prado CM, Siervo M, Mire E, Heymsfield SB, Stephan BC, Broyles S, Smith SR, Wells JC, Katzmarzyk PT (2014) A population-based approach to define body-composition phenotypes. Am J Clin Nutr 99:1369–1377PubMedCrossRefGoogle Scholar
  34. 34.
    Dolan E, Swinton PA, Sale C, Healy A, O’Reilly J (2017) Influence of adipose tissue mass on bone mass in an overweight or obese population: systematic review and meta-analysis. Nutr Rev 75:858–870PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, Ferrucci L, Guralnik JM, Fragala MS, Kenny AM, Kiel DP, Kritchevsky SB, Shardell MD, Dam TT, Vassileva MT (2014) The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 69:547–558PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Knapp KM, Welsman JR, Hopkins SJ, Shallcross A, Fogelman I, Blake GM (2015) Obesity increases precision errors in total body dual-energy X-ray absorptiometry measurements. J Clin Densitom 18:209–216PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Yu EW, Bouxsein ML, Roy AE, Baldwin C, Cange A, Neer RM, Kaplan LM, Finkelstein JS (2014) Bone loss after bariatric surgery: discordant results between DXA and QCT bone density. J Bone Miner Res 29:542–550PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    El Hage R, Jacob C, Moussa E, Benhamou CL, Jaffré C (2009) Total body, lumbar spine and hip bone mineral density in overweight adolescent girls: decreased or increased? J Bone Miner Metab 27:629–633PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    El Hage R, Jacob C, Moussa E, Jaffré C (2009) Effets de semaines d’entraînement en endurance sur le contenu minéral osseux et la densité minérale osseuse chez des adolescentes obèses, en surpoids et normales. Sci Sports 24:210–213CrossRefGoogle Scholar
  40. 40.
    Choi YJ (2016) Dual-energy X-ray absorptiometry: beyond bone mineral density determination. Endocrinol Metab 31:25–30CrossRefGoogle Scholar
  41. 41.
    Beck T (2003) Measuring the structural strength of bones with dual-energy X-ray absorptiometry: principles, technical limitations, and future possibilities. Osteoporos Int 14:S81–S88PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Beck TJ, Ruff CB, Warden KE, Scott WW Jr, Rao GU (1990) Predicting femoral neck strength from bone mineral data. A structural approach. Investig Radiol 25:6–18CrossRefGoogle Scholar
  43. 43.
    Martin RB, Burr DB (1984) Non-invasive measurement of long bone cross-sectional moment of inertia by photon absorptiometry. J Biomech 17:195–201PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Beck TJ, Looker AC, Ruff CB, Sievanen H, Wahner HW (2000) Structural trends in the aging femoral neck and proximal shaft: analysis of the Third National Health and Nutrition Examination Survey dual-energy X-ray absorptiometry data. J Bone Miner Res 15:2297–2304PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Beck TJ, Petit MA, Wu G, LeBoff MS, Cauley JA, Chen Z (2009) Does obesity really make the femur stronger? BMD, geometry and fracture incidence in the women’s health initiative-observational study. J Bone Miner Res 24:1369–1379PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Nascimento DC, Silva CR, Prestes J (2019) Sarcopenic obesity negatively affects muscle strength, physical function and quality of life in obese elderly women. J Phys Educ 30:e3023CrossRefGoogle Scholar
  47. 47.
    Nascimento DDC, Oliveira SDC, Vieira DCL, Funghetto SS, Silva AO, Valduga R, Schoenfeld BJ, Prestes J (2018) The impact of sarcopenic obesity on inflammation, lean body mass, and muscle strength in elderly women. Int J Gen Med 11:443–449PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Johnson Stoklossa CA, Sharma AM, Forhan M, Siervo M, Padwal RS, Prado CM (2017) Prevalence of sarcopenic obesity in adults with class II/III obesity using different diagnostic criteria. J Nutr Metab 2017:7307618PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Hars M, Biver E, Chevalley T, Herrmann F, Rizzoli R, Ferrari S, Trombetti A (2016) Low lean mass predicts incident fractures independently from FRAX: a prospective cohort study of recent retirees. J Bone Miner Res 31:2048–2056PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Kuwahata A, Kawamura Y, Yonehara Y, Matsuo T, Iwamoto I, Douchi T (2008) Non-weight-bearing effect of trunk and peripheral fat mass on bone mineral density in pre- and post-menopausal women. Maturitas 60:244–247PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society Bone and Mineral Research and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Emneh Hammoud
    • 1
    • 2
  • Hechmi Toumi
    • 2
    • 3
  • Christophe Jacob
    • 1
  • Antonio Pinti
    • 2
  • Eric Lespessailles
    • 2
    • 3
  • Rawad El Hage
    • 1
    Email author
  1. 1.Division of Education, Department of Physical Education, Faculty of Arts and SciencesUniversity of BalamandTripoliLebanon
  2. 2.I3MTO Laboratory, EA 4708University of OrléansOrléansFrance
  3. 3.Plateforme Recherche Innovation Médicale Mutualisée d’OrléansCentre Hospitalier Régional d’OrléansOrléansFrance

Personalised recommendations