18F-NaF-PET/CT in patients with primary hyperparathyroidism and brown tumors

  • Carmen Graf
  • Martin HuellnerEmail author
  • Oliver Tschopp
  • Beata Bode-Lesniewska
  • Christoph Schmid
Original Article



Brown tumors (BT) are non-neoplastic bone lesions infrequently occurring in patients with long-standing severe hyperparathyroidism (HPT). BT may be identified and characterized using 18-F-sodium fluoride-positron-emission-tomography/computed tomography (18F-NaF-PET/CT). We present a retrospective series of eight primary hyperparathyroidism (pHPT) patients with BT imaged with 18F-NaF-PET/CT.

Materials and methods

Imaging assessment included location, diameter, maximum standardized uptake value (SUVmax), metabolically active lesion volume (PETvol) of BT, total metabolically active bone volume (TMBvol) per patient and several computed tomography (CT) features of BT. Where appropriate, we analyzed the association between characteristic features of BT in 18F-NaF-PET/CT, histopathology, clinical symptomatology and laboratory parameters.


In our cohort of 8 patients (median age, 49 years, range, 26–73), 72 BT were found. The mean PETvol of BT was 89.48 cm3 ± 122.81 cm3 and the mean SUVmax was 17.5 ± 7.8. The total PETvol of BT per patient correlated positively with serum calcium (r = 0.810, p = 0.015), and negatively with glomerular filtration rate (GFR) (r = − 0.762, p = 0.028). TMBvol correlated significantly with serum PTH (r = 0.810, p = 0.015), alkaline phosphatase (r = 0.762, p = 0.028), and duration of postoperative hospitalization (r = 0.826, p = 0.011, 24.3 days ± 19.8 days).


18F-NaF-PET/CT is a valuable non-invasive whole-body imaging technique for the assessment of patients with pHPT and BT. TMBvol is associated with PTH and alkaline phosphatase, and the requirement for intense postoperative calcium substitution, which determines the duration of hospitalization.


Brown tumor Primary hyperparathyroidism PET/CT Sodium fluoride Endocrinology 



Sodium fluoride labeled with fluorine-18




Fluorodeoxyglucose labeled with fluorine-18


Bone mineral density


Brown tumors


Computed tomography


Dual energy X-ray absorptiometry


Field of view


Glomerular filtration rate


Hungry bone syndrome




Osteitis fibrosa cystica


Positron-emission-tomography/computed tomography


Metabolic volume


Primary hyperparathyroidism


Parathyroid hormone


Standard deviation


Secondary hyperparathyroidism


Maximum standardized uptake value


Total metabolically active bone volume per patient


Volume of interest



This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author contributions

Study design: C.G., M.H., O.T., C.S. Study conduct: C.S. Data collection: C.G., M.H., B.B., C.S. Data analysis: C.G., M.H., C.S. Data interpretation: C.G., M.H., O.T., B.B., C.S. Drafting manuscript: C. G., M.H. Revising manuscript content: C.G., M.H., O.T., B.B., C.S. Approving final version of manuscript: C.G., M.H., O.T., B.B., C.S. C.G., M.H. and C.S. take responsibility for the integrity of the data analysis.

Compliance with ethical standards

Conflict of interest

MH is a recipient of IIS grants, institutional grants, and speaker’s fees from GE Healthcare, and has received funding from the Alfred and Annemarie von Sick grant for translational and clinical cardiac and oncological research. All other authors have no conflict of interest.


  1. 1.
    Collip JP (1925) The extraction of a parathyroid hormone which will prevent or control parathyroid tetany and which regulates the level of blood calcium. J Biol Chem 63:395Google Scholar
  2. 2.
    Albright F, Aub JC, Bauer W (1934) Hyperparathyroidism: a common and polymorphic condition as illustrated by seventeen proved cases from one clinic. JAMA 104:9–35Google Scholar
  3. 3.
    Albright F, Reifenstein EC (1948) The parathyroid glands and metabolic bone disease, selected studies. The Williams and Wilkins Company, BaltimoreGoogle Scholar
  4. 4.
    Varma R, Kim YJ, Garjian K, Barank D (2014) Hyperparathyroidism and hungry bone syndrome revisited. Clin Nucl Med 39:704–706. CrossRefPubMedGoogle Scholar
  5. 5.
    Irie T, Mawatari T, Ikemura S, Matsui G, Iguchi T, Mitsuyasu H (2015) Brown tumor of the patella caused by primary hyperparathyroidism: a case report. Korean J Radiol 16:613–616. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Schnyder MA, Stolzmann P, Huber GF, Schmid C (2017) A patient with a history of breast cancer and multiple bone lesions: a case report. J Med Case Rep 11:127. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Brasier AR, Nussbaum SR (1988) Hungry bone syndrome: clinical and biochemical predictors of its occurrence after parathyroid surgery. Am J Med 84:654–660CrossRefGoogle Scholar
  8. 8.
    Guney E, Yigitbasi OG, Bayram F, Ozer V, Canoz O (2001) Brown tumor of the maxilla associated with primary hyperparathyroidism. Auris Nasus Larynx 28:369–372CrossRefGoogle Scholar
  9. 9.
    Scott SN, Graham SM, Sato Y, Robinson RA (1999) Brown tumor of the palate in a patient with primary hyperparathyroidism. Ann Otol Rhinol Laryngol 108:91–94. CrossRefPubMedGoogle Scholar
  10. 10.
    Hermoye A, Malghem J, Lecouvet F, Goffin E, Lonneux M, Lhommel R (2009) F-18 FDG PET/CT as a noninvasive diagnostic and follow-up tool in brown tumors due to secondary hyperparathyroidism. Clin Nucl Med 34:330–332. CrossRefPubMedGoogle Scholar
  11. 11.
    Kuwahara K, Izawa S, Murabe H, Murakami N, Yokota T, Wani Y, Notohara K, Tsukayama C, Ishimori T, Watanabe Y (2007) Increased 18F-fluorodeoxyglucose uptake in a brown tumor in a patient with primary hyperparathyroidism. J Clin Endocrinol Metab 92:2408–2409. CrossRefPubMedGoogle Scholar
  12. 12.
    Gahier Penhoat M, Drui D, Ansquer C, Mirallie E, Maugars Y, Guillot P (2017) Contribution of 18-FDG PET/CT to brown tumor detection in a patient with primary hyperparathyroidism. Jt Bone Spine 84:209–212. CrossRefGoogle Scholar
  13. 13.
    Sager S, Aliyev A, Halac M, Ozturk T (2012) Positron emission tomography/computed tomography imaging of brown tumors mimicking multiple skeletal metastases in patient with primary hyperparathyroidism. Indian J Endocrinol Metab 16:850–852. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Huellner MW, Appenzeller P, Kuhn FP, Husmann L, Pietsch CM, Burger IA, Porto M, Delso G, von Schulthess GK, Veit-Haibach P (2014) Whole-body nonenhanced PET/MR versus PET/CT in the staging and restaging of cancers: preliminary observations. Radiology 273:859–869. CrossRefPubMedGoogle Scholar
  15. 15.
    Bastawrous S, Bhargava P, Behnia F, Djang DS, Haseley DR (2014) Newer PET application with an old tracer: role of 18F-NaF skeletal PET/CT in oncologic practice. Radiographics 34:1295–1316. CrossRefPubMedGoogle Scholar
  16. 16.
    Czernin J, Satyamurthy N, Schiepers C (2010) Molecular mechanisms of bone 18F-NaF deposition. J Nucl Med 51:1826–1829. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Even-Sapir E, Metser U, Flusser G, Zuriel L, Kollender Y, Lerman H, Lievshitz G, Ron I, Mishani E (2004) Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med 45:272–278PubMedGoogle Scholar
  18. 18.
    Fischer DR, Zweifel K, Treyer V, Hesselmann R, Johayem A, Stumpe KD, von Schulthess GK, Hany TF, Strobel K (2011) Assessment of successful incorporation of cages after cervical or lumbar intercorporal fusion with [(18)F]fluoride positron-emission tomography/computed tomography. Eur Spine J 20:640–648. CrossRefPubMedGoogle Scholar
  19. 19.
    Fischer DR, Pfirrmann CW, Zubler V, Stumpe KD, Seifert B, Strobel K, Tamborrini G, von Schulthess GK, Michel BA, Ciurea A (2012) High bone turnover assessed by 18F-fluoride PET/CT in the spine and sacroiliac joints of patients with ankylosing spondylitis: comparison with inflammatory lesions detected by whole body MRI. EJNMMI Res 2:38. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jadvar H, Desai B, Conti PS (2015) Sodium 18F-fluoride PET/CT of bone, joint, and other disorders. Semin Nucl Med 45:58–65. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hardoff R, Frajewicki V (1996) Bone scintigraphy in hungry bone syndrome following parathyroidectomy. J Nucl Med 37:1371–1373PubMedGoogle Scholar
  22. 22.
    Meng Z, Zhu M, He Q, Tian W, Zhang Y, Jia Q, Tan J (2011) Clinical implications of brown tumor uptake in whole-body 99 mTc-sestamibi scans for primary hyperparathyroidism. Nucl Med Commun 32:708–715. CrossRefPubMedGoogle Scholar
  23. 23.
    Fonager RF, Zacho HD, Langkilde NC, Fledelius J, Ejlersen JA, Haarmark C, Hendel HW, Lange MB, Jochumsen MR, Mortensen JC, Petersen LJ (2017) Diagnostic test accuracy study of (18)F-sodium fluoride PET/CT, (99m)Tc-labelled diphosphonate SPECT/CT, and planar bone scintigraphy for diagnosis of bone metastases in newly diagnosed, high-risk prostate cancer. Am J Nucl Med Mol Imaging 7:218–227PubMedPubMedCentralGoogle Scholar
  24. 24.
    Strobel K, Vali R (2012) (18)F NaF PET/CT versus conventional bone scanning in the assessment of benign bone disease. PET Clin 7:249–261. CrossRefPubMedGoogle Scholar
  25. 25.
    Schirrmeister H, Guhlmann A, Elsner K, Kotzerke J, Glatting G, Rentschler M, Neumaier B, Trager H, Nussle K, Reske SN (1999) Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med 40:1623–1629PubMedGoogle Scholar
  26. 26.
    Beheshti M, Mottaghy FM, Paycha F, Behrendt FFF, Van den Wyngaert T, Fogelman I, Strobel K, Celli M, Fanti S, Giammarile F, Krause B, Langsteger W (2015) (18)F-NaF PET/CT: EANM procedure guidelines for bone imaging. Eur J Nucl Med Mol Imaging 42:1767–1777. CrossRefPubMedGoogle Scholar
  27. 27.
    Hetzel M, Arslandemir C, Konig HH, Buck AK, Nussle K, Glatting G, Gabelmann A, Hetzel J, Hombach V, Schirrmeister H (2003) F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost-effectiveness, and impact on patient management. J Bone Miner Res 18:2206–2214. CrossRefPubMedGoogle Scholar
  28. 28.
    Mick CG, James T, Hill JD, Williams P, Perry M (2014) Molecular imaging in oncology: (18)F-sodium fluoride PET imaging of osseous metastatic disease. AJR Am J Roentgenol 203:263–271. CrossRefPubMedGoogle Scholar
  29. 29.
    Pontes FSC, Lopes MA, de Souza LL, Santos Dos, da Mata Rezende D, Santos-Silva AR, Jorge J Jr, da Silva WG, Pires FR, Rocha AC, de Campos WG, Caldato MCF, Martin RM, Fonseca FP, Pontes HAR (2018) Oral and maxillofacial manifestations of chronic kidney disease-mineral and bone disorder: a multicenter retrospective study. Oral Surg Oral Med Oral Pathol Oral Radiol 125:31–43. CrossRefPubMedGoogle Scholar
  30. 30.
    Knowles NG, Smith DL, Outwater EK (2008) MRI diagnosis of brown tumor based on magnetic susceptibility. J Magn Reson Imaging 28:759–761. CrossRefPubMedGoogle Scholar
  31. 31.
    Rejnmark L, Vestergaard P, Mosekilde L (2011) Nephrolithiasis and Renal Calcifications in Primary Hyperparathyroidism. J Clin Endocrinol Metabol 96:2377–2385CrossRefGoogle Scholar
  32. 32.
    Sommerauer M, Graf C, Schafer N, Huber G, Schneider P, Wuthrich R, Schmid C, Steinert H (2015) Sensitivity and specificity of dual-isotope 99mTc-tetrofosmin and 123I sodium iodide single photon emission computed tomography (SPECT) in hyperparathyroidism. PLoS One 10:e0129194. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Jorda M, Rey L, Hanly A, Ganjei-Azar P (2000) Fine-needle aspiration cytology of bone: accuracy and pitfalls of cytodiagnosis. Cancer 90:47–54CrossRefGoogle Scholar
  34. 34.
    Khalbuss WE, Teot LA, Monaco SE (2010) Diagnostic accuracy and limitations of fine-needle aspiration cytology of bone and soft tissue lesions: a review of 1114 cases with cytological-histological correlation. Cancer Cytopathol 118:24–32. CrossRefPubMedGoogle Scholar
  35. 35.
    Vigorita VJ, Anand VS, Einhorn TA (1986) Sampling error in diagnosing hyperparathyroid changes in bone in small needle biopsies. Am J Surg Pathol 10:140–142. CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society Bone and Mineral Research and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of EndocrinologyUniversity Hospital Zurich/University of ZurichZurichSwitzerland
  2. 2.Department of Nuclear MedicineUniversity Hospital Zurich/University of ZurichZurichSwitzerland
  3. 3.Institute of Pathology and Molecular PathologyUniversity Hospital Zurich/University of ZurichZurichSwitzerland

Personalised recommendations