Advertisement

Mutation spectrum of COL1A1/COL1A2 screening by high-resolution melting analysis of Chinese patients with osteogenesis imperfecta

  • Mingyan Ju
  • Xue Bai
  • Tianke Zhang
  • Yunshou Lin
  • Li Yang
  • Huaiyu Zhou
  • Xiaoli Chang
  • Shizhen Guan
  • Xiuzhi Ren
  • Keqiu Li
  • Yi Wang
  • Guang LiEmail author
Original Article
  • 4 Downloads

Abstract

High-resolution melting (HRM) analysis has been shown to be a time-saving method for the screening of genetic variants. To increase the precision of the diagnosis of osteogenesis imperfecta (OI), we used HRM to explore COL1A1/COL1A2 mutations in 87 Chinese OI patients and to perform population-based studies of the relationships between their genotypes and phenotypes. Peripheral blood samples were collected from the 87 non-consanguineous probands. The coding regions and exon boundaries of COL1A1/COL1A2 were detected by HRM and confirmed by Sanger sequencing. The functional effects of mutations were predicted through bioinformatic tools. Mutations were detected in 70.3% of familial cases and 40% of sporadic cases (p < 0.01). Compared with COL1A1 mutations, patients with COL1A2 mutations were more prone to severe phenotypes. Helical mutations (caused by substitution of the glycine within the Gly–X–Y triplet domain) were more likely to occur in patients with type III and IV (p < 0.05). Haploinsufficiency mutations (caused by frameshift, nonsense, and splice-site mutations) appeared more frequently in patients with type I (p < 0.05). Compared with the Sanger sequencing and whole exome sequencing (WES), HRM was found to reduce total costs by 78%– 80% in patients who had a positive HRM separate melting curve. Our findings suggest that HRM would greatly benefit small and understaffed hospitals and laboratories, and would facilitate the accurate diagnosis and early treatment of OI in remote and less developed regions.

Keywords

COL1A1/COL1A2 Osteogenesis imperfecta Phenotypes HRM Chinese 

Notes

Acknowledgments

The authors would like to thank Dr. Ren Xiuzhi and nurse Chen Mei for providing clinical diagnosis and control blood samples.

Funding

This study was supported by research grants from National Key R&D Program of China (2017YFC1001904); National Natural Science Foundation of China (21647008); Tianjin Science and Technology Support Program (16YFZCSY00900).

Compliance with ethical standards

Conflict of interest

None of the authors have conflicts of interest.

Ethics approval

Tianjin Hospital ethics committee.

Supplementary material

774_2019_1039_MOESM1_ESM.doc (413 kb)
Supplementary material 1 (DOC 413 kb)

References

  1. 1.
    Glorieux FH (2008) Osteogenesis imperfecta. Best Pract Res Clin Rheumatol 22:85–100.  https://doi.org/10.1016/j.berh.2007.12.012 CrossRefGoogle Scholar
  2. 2.
    Van Dijk FS, Sillence DO (2014) Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A 164A:1470–1481.  https://doi.org/10.1002/ajmg.a.36545 CrossRefGoogle Scholar
  3. 3.
    Bodian DL, Chan TF, Poon A, Schwarze U, Yang K, Byers PH, Kwok PY, Klein TE (2009) Mutation and polymorphism spectrum in osteogenesis imperfecta type II: implications for genotype-phenotype relationships. Hum Mol Genet 18:463–471.  https://doi.org/10.1093/hmg/ddn374 CrossRefGoogle Scholar
  4. 4.
    Fraser RD, MacRae TP, Suzuki E (1979) Chain conformation in the collagen molecule. J Mol Biol 129:463–481CrossRefGoogle Scholar
  5. 5.
    Bhate M, Wang X, Baum J, Brodsky B (2002) Folding and conformational consequences of glycine to alanine replacements at different positions in a collagen model peptide. Biochemistry 41:6539–6547CrossRefGoogle Scholar
  6. 6.
    van Dijk FS, Byers PH, Dalgleish R, Malfait F, Maugeri A, Rohrbach M, Symoens S, Sistermans EA, Pals G (2012) EMQN best practice guidelines for the laboratory diagnosis of osteogenesis imperfecta. Eur J Hum Genet 20:11–19.  https://doi.org/10.1038/ejhg.2011.141 CrossRefGoogle Scholar
  7. 7.
    Van Dijk FS, Sillence DO (2014) Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A 164A:1470–1481.  https://doi.org/10.1002/ajmg.a.36545 CrossRefGoogle Scholar
  8. 8.
    Gauba V, Hartgerink JD (2008) Synthetic collagen heterotrimers: structural mimics of wild-type and mutant collagen type I. J Am Chem Soc 130:7509–7515.  https://doi.org/10.1021/ja801670v CrossRefGoogle Scholar
  9. 9.
    Hayden EC (2014) Technology: the $1,000 genome. Nature 507:294–295.  https://doi.org/10.1038/507294a CrossRefGoogle Scholar
  10. 10.
    Grada A, Weinbrecht K (2013) Next-generation sequencing: methodology and application. J Invest Dermatol 133:e11.  https://doi.org/10.1038/jid.2013.248 CrossRefGoogle Scholar
  11. 11.
    Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380.  https://doi.org/10.1038/nature03959 CrossRefGoogle Scholar
  12. 12.
    Vincent AT, Derome N, Boyle B, Culley AI, Charette SJ (2017) Next-generation sequencing (NGS) in the microbiological world: how to make the most of your money. J Microbiol Methods 138:60–71.  https://doi.org/10.1016/j.mimet.2016.02.016 CrossRefGoogle Scholar
  13. 13.
    Liu YP, Wu HY, Yang X, Xu HQ, Chen D, Huang Q, Fu WL (2014) Diagnostic accuracy of high resolution melting analysis for detection of KRAS mutations: a systematic review and meta-analysis. Sci Rep 4:7521.  https://doi.org/10.1038/srep07521 CrossRefGoogle Scholar
  14. 14.
    Chen D, Wang YY, Chuai ZR, Huang JF, Wang YX, Liu K, Zhang LQ, Yang Z, Shi DC, Liu Q, Huang Q, Fu WL (2014) High-resolution melting analysis for accurate detection of BRAF mutations: a systematic review and meta-analysis. Sci Rep 4:4168.  https://doi.org/10.1038/srep04168 CrossRefGoogle Scholar
  15. 15.
    Reed GH, Wittwer CT (2004) Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin Chem 50:1748–1754.  https://doi.org/10.1373/clinchem.2003.029751 CrossRefGoogle Scholar
  16. 16.
    Ney JT, Froehner S, Roesler A, Buettner R, Merkelbach-Bruse S (2012) High-resolution melting analysis as a sensitive prescreening diagnostic tool to detect KRAS, BRAF, PIK3CA, and AKT1 mutations in formalin-fixed, paraffin-embedded tissues. Arch Pathol Lab Med 136:983–992.  https://doi.org/10.5858/arpa.2011-0176-OA CrossRefGoogle Scholar
  17. 17.
    Kho SL, Chua KH, George E, Tan JA (2015) A novel gap-PCR with high resolution melting analysis for the detection of alpha-thalassaemia Southeast Asian and Filipino beta degrees -thalassaemia deletion. Sci Rep 5:13937.  https://doi.org/10.1038/srep13937 CrossRefGoogle Scholar
  18. 18.
    Ouragini H, Haddad F, Darragi I, Abbes S (2014) Rapid and inexpensive detection of common HBB gene mutations in Tunisian population by high-resolution melting analysis: implication for molecular diagnosis. Hematology 19:80–84.  https://doi.org/10.1179/1607845413Y.0000000096 CrossRefGoogle Scholar
  19. 19.
    Gentile FV, Zuntini M, Parra A, Battistelli L, Pandolfi M, Pals G, Sangiorgi L (2012) Validation of a quantitative PCR-high-resolution melting protocol for simultaneous screening of COL1A1 and COL1A2 point mutations and large rearrangements: application for diagnosis of osteogenesis imperfecta. Hum Mutat 33:1697–1707.  https://doi.org/10.1002/humu.22146 CrossRefGoogle Scholar
  20. 20.
    Zhang ZL, Zhang H, Ke YH, Yue H, Xiao WJ, Yu JB, Gu JM, Hu WW, Wang C, He JW, Fu WZ (2012) The identification of novel mutations in COL1A1, COL1A2, and LEPRE1 genes in Chinese patients with osteogenesis imperfecta. J Bone Miner Metab 30:69–77.  https://doi.org/10.1007/s00774-011-0284-6 CrossRefGoogle Scholar
  21. 21.
    Li L, Mao B, Li S, Xiao J, Wang H, Zhang J, Ren X, Wang Y, Wu Y, Cao Y, Lu C (2019) Genotypic and phenotypic characterization of Chinese patients with osteogenesis imperfecta. Hum Mutat 40:588–600.  https://doi.org/10.1002/humu.23718 Google Scholar
  22. 22.
    Basel D, Steiner RD (2009) Osteogenesis imperfecta: recent findings shed new light on this once well-understood condition. Genet Med 11:375–385.  https://doi.org/10.1097/GIM.0b013e3181a1ff7b CrossRefGoogle Scholar
  23. 23.
    Pollitt R, McMahon R, Nunn J, Bamford R, Afifi A, Bishop N, Dalton A (2006) Mutation analysis of COL1A1 and COL1A2 in patients diagnosed with osteogenesis imperfecta type I-IV. Hum Mutat 27:716.  https://doi.org/10.1002/humu.9430 CrossRefGoogle Scholar
  24. 24.
    Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD, Milgrom S, Hyland JC, Körkkö J, Prockop DJ, De Paepe A, Coucke P (2007) Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Human mutation 28:209–221.  https://doi.org/10.1002/humu.20429 CrossRefGoogle Scholar
  25. 25.
    Lee KS, Song HR, Cho TJ, Kim HJ, Lee TM, Jin HS, Park HY, Kang S, Jung SC, Koo SK (2006) Mutational spectrum of type I collagen genes in Korean patients with osteogenesis imperfecta. Hum Mutat 27:599.  https://doi.org/10.1002/humu.9423 CrossRefGoogle Scholar
  26. 26.
    Stephen J, Shukla A, Dalal A, Girisha KM, Shah H, Gupta N, Kabra M, Dabadghao P, Hasegawa K, Tanaka H, Phadke SR (2014) Mutation spectrum of COL1A1 and COL1A2 genes in Indian patients with osteogenesis imperfecta. Am J Med Genet A 164A:1482–1489.  https://doi.org/10.1002/ajmg.a.36481 CrossRefGoogle Scholar
  27. 27.
    Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5:16–18.  https://doi.org/10.1038/nmeth1156 CrossRefGoogle Scholar
  28. 28.
    Voelkerding KV, Dames SA, Durtschi JD (2009) Next-generation sequencing: from basic research to diagnostics. Clin Chem 55:641–658.  https://doi.org/10.1373/clinchem.2008.112789 CrossRefGoogle Scholar
  29. 29.
    Wang J, Ren X, Bai X, Zhang T, Wang Y, Li K, Li G (2015) Identification of gene mutation in patients with osteogenesis imperfect using high resolution melting analysis. Sci Rep 5:13468.  https://doi.org/10.1038/srep13468 CrossRefGoogle Scholar
  30. 30.
    Maioli M, Gnoli M, Boarini M, Tremosini M, Zambrano A, Pedrini E, Mordenti M, Corsini S, D’Eufemia P, Versacci P, Celli M, Sangiorgi L (2019) Genotype-phenotype correlation study in 364 osteogenesis imperfecta Italian patients. Eur J Hum Genet 10:100.  https://doi.org/10.1038/s41431-019-0373-x Google Scholar
  31. 31.
    Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E, Wittwer C (2004) Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin Chem 50:1156–1164.  https://doi.org/10.1373/clinchem.2004.032136 CrossRefGoogle Scholar
  32. 32.
    Lyondagger E, Millsondagger A, Phan T, Wittwer CT (1998) Detection and identification of base alterations within the region of factor V Leiden by Fluorescent melting curves. Mol Diagn 3:203–209. https://doi.org/10.154/MODI00300203Google Scholar
  33. 33.
    Reed GH, Kent JO, Wittwer CT (2007) High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics 8:597–608.  https://doi.org/10.2217/14622416.8.6.597 CrossRefGoogle Scholar

Copyright information

© The Japanese Society Bone and Mineral Research and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Mingyan Ju
    • 1
  • Xue Bai
    • 2
  • Tianke Zhang
    • 3
  • Yunshou Lin
    • 4
  • Li Yang
    • 4
  • Huaiyu Zhou
    • 4
  • Xiaoli Chang
    • 2
  • Shizhen Guan
    • 2
  • Xiuzhi Ren
    • 5
  • Keqiu Li
    • 1
  • Yi Wang
    • 2
  • Guang Li
    • 1
    Email author
  1. 1.Department of GeneticsTianjin Medical UniversityTianjinPeople’s Republic of China
  2. 2.Department of Medical LaboratoryTianjin HospitalTianjinPeople’s Republic of China
  3. 3.Colorectal SurgeryTianjin People’s HospitalTianjinPeople’s Republic of China
  4. 4.School of Basic Medical SciencesTianjin Medical UniversityTianjinPeople’s Republic of China
  5. 5.Orthopedic Ward IIIWuqing People’s HospitalTianjinPeople’s Republic of China

Personalised recommendations