Journal of Bone and Mineral Metabolism

, Volume 37, Issue 6, pp 1026–1035 | Cite as

Local administration of aspirin with β-tricalcium phosphate/poly-lactic-co-glycolic acid (β-TCP/PLGA) could enhance osteoporotic bone regeneration

  • Zhou-Shan Tao
  • Xing-Jing Wu
  • Wan-Shu Zhou
  • Xin-ju Wu
  • Wei Liao
  • Min YangEmail author
  • Hong-Guang XuEmail author
  • Lei Yang
Original Article


Composite materials β-tricalcium phosphate (β-TCP) and poly-lactic-co-glycolic acid (PLGA) have achieved stable bone regeneration without cell transplantation in previous studies. Recent research shows that aspirin (ASP) has great potential in promoting bone regeneration. The objective of the present study was to incorporate PLGA into β-TCP combined with a lower single-dose local administration of ASP to enhance its in vivo biodegradation and bone tissue growth. After the creation of a rodent critical-sized femoral metaphyseal bone defect, PLGA -modified β-TCP (TP) was prepared by mixing sieved granules of β-TCP and PLGA (50:50, v/v) for medical use, then TP with dripped 50 µg/0.1 ml and 100 µg/0.1 ml aspirin solution was implanted into the defect of OVX rats until death at 8 weeks. The defected area in distal femurs of rats was harvested for evaluation by histology, micro-CT, biomechanics and real time RT-PCR. The results of our study show that a single-dose local administration of ASP combined with the local usage of TP can increase the healing of defects in OVX rats. Single-dose local administration of aspirin can improve the transcription of genes involved in the regulation of bone formation and vascularization in the defect area, and inhibits osteoclast activity. Furthermore, treatments with a higher single-dose local administration of ASP and TP showed a stronger effect on accelerating the local bone formation than while using a lower dose of ASP. The results from our study demonstrate that the combination of a single-dose local administration of ASP and β-TCP/PLGA had an additive effect on local bone formation in osteoporosis rats, and bone regeneration by PLGA/β-TCP/ASP occured in a dose-dependent manner.


Osteoporotic bone defect β-Tricalcium phosphate Poly-lactic-co-glycolic acid Aspirin Regeneration 


Compliance with Ethical Standards

Conflict of interest

All authors have no conflicts of interest.

Ethical approval

This study did not involve human participants.

Informed consent

This study does not involve human participants and therefore does not require informed consent.


  1. 1.
    Boulier A, Schwarz J, Lespesailles E, Baniel A, Tomé D, Blais A (2017) Combination of micellar casein with calcium and vitamins D2 and K2 improves bone status of ovariectomized mice. Osteoporos Int 27:1–10Google Scholar
  2. 2.
    Hernández A, Sánchez E, Soriano I, Reyes R, Delgado A, Évora C (2012) Material-related effects of BMP-2 delivery systems on bone regeneration. Acta Biomater 8:781–791CrossRefGoogle Scholar
  3. 3.
    Thormann U, Ray S, Sommer U, Elkhassawna T, Rehling T, Hundgeburth M, Henß A, Rohnke M, Janek J, Lips KS, Heiss C, Schlewitz G, Szalay G, Schumacher M, Gelinsky M, Schnettler R, Alt V (2013) Bone formation induced by strontium modified calcium phosphate cement in critical-size metaphyseal fracture defects in ovariectomized rats. Biomaterials 34:8589–8598CrossRefGoogle Scholar
  4. 4.
    Sengupta S, Park SH, Patel A, Carn J, Lee K, Kaplan DLJTEPA (2010) Hypoxia and amino acid supplementation synergistically promote the osteogenesis of human mesenchymal stem cells on silk protein scaffolds. Tissue Eng Part A 16:3623CrossRefGoogle Scholar
  5. 5.
    Denry I, Kuhn LT (2016) Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dent Mater 32:43–53CrossRefGoogle Scholar
  6. 6.
    Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30:546–554CrossRefGoogle Scholar
  7. 7.
    Shavandi A, Ael-D B, Sun Z, Ali A, Gould MJMS (2015) A novel squid pen chitosan/hydroxyapatite/β-tricalcium phosphate composite for bone tissue engineering. Mater Sci Eng C 55:373–383CrossRefGoogle Scholar
  8. 8.
    Liu X, Ma PXJAoBE (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32:477–486CrossRefGoogle Scholar
  9. 9.
    Purnama A, Aid-Launais R, Haddad O, Maire M, Mantovani D, Letourneur D, Hlawaty H, Le Visage C (2015) Fucoidan in a 3D scaffold interacts with vascular endothelial growth factor and promotes neovascularization in mice. Drug Deliv Transl Res 5(2):187–197CrossRefGoogle Scholar
  10. 10.
    Zeng YP, Yang C, Li Y, Fan Y, Yang HJ, Liu B, Sang HX (2016) Aspirin inhibits osteoclastogenesis by suppressing the activation of NF-κB and MAPKs in RANKL-induced RAW264.7 cells. Mol Med Rep 14:1957–1962CrossRefGoogle Scholar
  11. 11.
    Liu Y, Wang L, Kikuiri T, Akiyama K, Chen C, Xu X, Yang R, Chen W, Wang S, Shi S (2011) Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α. Nat Med 17(12):1594–1601CrossRefGoogle Scholar
  12. 12.
    Wei J, Wang J, Gong Y, Zeng R (2015) Effectiveness of combined salmon calcitonin and aspirin therapy for osteoporosis in ovariectomized rats. Mol Med Rep 12:1717CrossRefGoogle Scholar
  13. 13.
    Zhang HX, Xiao GY, Wang X, Dong ZG, Ma ZY, Li L, Li YH, Pan X, Nie L (2015) Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering. J Biomed Mater Res Part A 103:3250–3258CrossRefGoogle Scholar
  14. 14.
    Tao ZS, Zhou WS, Qiang Z, Tu KK, Huang ZL, Xu HM, Sun T, Lv YX, Cui W, Yang L (2016) Intermittent administration of human parathyroid hormone (1–34) increases fixation of strontium-doped hydroxyapatite coating titanium implants via electrochemical deposition in ovariectomized rat femur. J Biomater Appl 30(7):952–960CrossRefGoogle Scholar
  15. 15.
    Tao ZS, Zhou WS, He XW, Liu W, Bai BL, Zhou Q, Huang ZL, Tu KK, Li H, Sun T, Lv YX, Cui W, Yang L (2016) A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats. Mater Sci Eng C Mater Biol Appl 62:226–232. CrossRefPubMedGoogle Scholar
  16. 16.
    Tao ZS, Zhou WS, Wu XJ, Wang L, Yang M, Xie JB, Xu ZJ, Ding GZ (2019) Single-dose local administration of parathyroid hormone (1–34, PTH) with beta-tricalcium phosphate/collagen (beta-TCP/COL) enhances bone defect healing in ovariectomized rats. J Bone Miner Metab 37:28–35. CrossRefPubMedGoogle Scholar
  17. 17.
    Tao Z, Zhou W, Jiang Y, Wu X, Xu Z, Yang M, Xie J (2018) Effects of strontium-modified calcium phosphate cement combined with bone morphogenetic protein-2 on osteoporotic bone defects healing in rats. J Biomater Appl 33:3–10. CrossRefPubMedGoogle Scholar
  18. 18.
    Kajii F, Iwai A, Tanaka H, Matsui K, Kawai T, Kamakura S (2018) Single-dose local administration of teriparatide with a octacalcium phosphate collagen composite enhances bone regeneration in a rodent critical-sized calvarial defect. J Biomed Mater Res Part B Appl Biomater 106:1851–1857CrossRefGoogle Scholar
  19. 19.
    Tao ZS, Tu KK, Huang ZL, Zhou Q, Sun T, Xu HM, Zhou YL, Lv YX, Cui W, Yang L (2016) Combined treatment with parathyroid hormone (1–34) and beta-tricalcium phosphate had an additive effect on local bone formation in a rat defect model. Med Biol Eng Comput 54(9):1353–1362CrossRefGoogle Scholar
  20. 20.
    Tao ZS, Zhou WS, Tu KK, Huang ZL, Zhou Q, Sun T, Lv YX, Cui W, Yang L (2015) Effect exerted by teriparatide upon repair function of beta-tricalcium phosphate to ovariectomised rat’s femoral metaphysis defect caused by osteoporosis. Injury 46:2134–2141. CrossRefPubMedGoogle Scholar
  21. 21.
    Tao ZS, Zhou WS, Wu XJ, Zhang X, Wang L, Xie JB, Xu ZJ, Ding GZ, Yang M (2019) Prevention of ovariectomy-induced osteoporosis in rats : comparative study of zoledronic acid, parathyroid hormone (1–34) and strontium ranelate. Z Gerontol Geriatr 52:139–147. CrossRefPubMedGoogle Scholar
  22. 22.
    Tao ZS, Lv YX, Cui W, Huang ZL, Tu KK, Zhou Q, Sun T, Yang L (2016) Effect of teriparatide on repair of femoral metaphyseal defect in ovariectomized rats. Z Gerontol Geriatr 49(5):423–428CrossRefGoogle Scholar
  23. 23.
    Yang N, Cui Y, Tan J, Fu X, Han X, Leng H, Song C (2014) Local injection of a single dose of simvastatin augments osteoporotic bone mass in ovariectomized rats. J Bone Miner Metab 32(3):252–260CrossRefPubMedGoogle Scholar
  24. 24.
    Lim SS, Kook SH, Bhattarai G, Cho ES, Seo YK, Lee JC (2015) Local delivery of COMP-angiopoietin 1 accelerates new bone formation in rat calvarial defects. J Biomed Mater Res Part A 103:2942–2951CrossRefGoogle Scholar
  25. 25.
    Bone HG, Greenspan SL, Mckeever C, Bell N, Davidson M, Downs RW (2000) Alendronate and estrogen effects in postmenopausal women with low bone mineral density. Alendronate/Estrogen Study Group. J Clin Endocr Metab 85:720–726PubMedGoogle Scholar
  26. 26.
    Xie QF, Xie JH, Dong TT, Su JY, Cai DK, Chen JP, Liu LF, Li YC, Lai XP, Tsim KW, Su ZR (2012) Effect of a derived herbal recipe from an ancient Chinese formula, Danggui Buxue Tang, on ovariectomized rats. J Ethnopharmacol 144(3):567–575CrossRefGoogle Scholar
  27. 27.
    Chen L, Yang L, Yao M, Cui XJ, Xue CC, Wang YJ, Shu B (2016) Biomechanical characteristics of osteoporotic fracture healing in ovariectomized rats: a systematic review. PLoS One 11:e0153120CrossRefGoogle Scholar
  28. 28.
    Vervloet MG, Brandenburg VM (2017) Circulating markers of bone turnover. J Nephrol 30:663–670CrossRefGoogle Scholar
  29. 29.
    Gasser JA, Kneissel M (2017) Bone physiology and biology. Springer, ChamCrossRefGoogle Scholar
  30. 30.
    Tao ZS, Zhou WS, Tu KK, Huang ZL, Zhou Q, Sun T, Lv YX, Cui W, Yang L (2015) Treatment study of distal femur for parathyroid hormone (1–34) and beta-tricalcium phosphate on bone formation in critical-sized defects in osteopenic rats. J Cranio-Maxillo Fac Surg 43(10):2136–2143CrossRefGoogle Scholar
  31. 31.
    Thanaviratananich S, Thanaviratananich S, Ngamjarus CJB (2011) The effect of BMP-2 on the osteoconductive properties of β-tricalcium phosphate in rat calvaria defects. Biomaterials 32:3855–3861CrossRefGoogle Scholar
  32. 32.
    Rachner TD, Khosla S, Hofbauer LCJL (2011) Osteoporosis: now and the future. Lancet 377:1276–1287CrossRefGoogle Scholar
  33. 33.
    Cao L, Liu G, Gan Y, Fan Q, Yang F, Zhang X, Tang T, Dai K (2012) The use of autologous enriched bone marrow MSCs to enhance osteoporotic bone defect repair in long-term estrogen deficient goats. Biomaterials 33(20):5076–5084CrossRefGoogle Scholar
  34. 34.
    Williams J, Maitra S, Anderson M, Christiansen B, Reddi A, Lee MJ (2015) BMP-7 and bone regeneration: evaluation of dose–response in a rodent segmental defect model. J Orthop Trauma. 29:e336–e341CrossRefGoogle Scholar
  35. 35.
    Shi S, Gronthos S, Chen S, Reddi A, Counter CM, Robey PG, Wang CY (2002) Bone formation by human postnatal bone marrow stromal stem cells isenhanced by telomerase expression. Nat Biotechnol 20(6):587–591CrossRefGoogle Scholar
  36. 36.
    Hu Z, Zhang F, Yang Z, Zhang J, Zhang D, Yang N, Zhang Y, Cao K (2013) Low–dose aspirin promotes endothelial progenitor cell migration and adhesion and prevents senescence. Cell Biol Int 32:761–768CrossRefGoogle Scholar
  37. 37.
    Yamaza T, Miura Y, Bi Y, Liu Y, Akiyama K, Sonoyama W, Patel V, Gutkind S, Young M, Gronthos S, Le A, Wang CY, Chen W, Shi S (2008) Pharmacologic stem cell based intervention as a new approach to osteoporosis treatment in rodents. PLoS One 3:907–911CrossRefGoogle Scholar
  38. 38.
    Carbone LD, Tylavsky FA, Cauley JA, Harris TB, Lang TF, Bauer DC, Barrow KD, Kritchevsky SB (2003) Association between bone mineral density and the use of nonsteroidal anti-inflammatory drugs and aspirin: impact of cyclooxygenase selectivity. J Bone Miner Res 18:1795–1802. CrossRefPubMedGoogle Scholar
  39. 39.
    Xie H, Cui Z, Wang L, Xia Z, Hu Y, Xian L, Li C, Xie L, Crane J, Wan M, Zhen G, Bian Q, Yu B, Chang W, Qiu T, Pickarski M, Duong LT, Windle JJ, Luo X, Liao E, Cao X (2014) PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med 20:1270–1278CrossRefGoogle Scholar
  40. 40.
    Kusumbe AP, Ramasamy SK, Adams RH (2014) Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nat Biotechnol 507:323–328Google Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Zhou-Shan Tao
    • 1
  • Xing-Jing Wu
    • 1
  • Wan-Shu Zhou
    • 2
  • Xin-ju Wu
    • 1
  • Wei Liao
    • 3
  • Min Yang
    • 1
    Email author
  • Hong-Guang Xu
    • 1
    • 4
    Email author
  • Lei Yang
    • 5
  1. 1.Department of Trauma OrthopedicsThe First Affiliated Hospital of Wannan Medical College, Yijishan HospitalWuhuPeople’s Republic of China
  2. 2.Department of GeriatricsThe Second Affiliated Hospital of Wannan Medical CollegeWuhuPeople’s Republic of China
  3. 3.Department of OrthopedicsChildren’s Hospital of Nanjing Medical UniversityNanjingPeople’s Republic of China
  4. 4.Department of Spinal OrthopedicsThe First Affiliated Hospital of Wannan Medical College, Yijishan HospitalWuhuPeople’s Republic of China
  5. 5.Department of Orthopaedics SurgeryThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouPeople’s Republic of China

Personalised recommendations