Serum level vitamin D and parathyroid hormone, and mortality, with or without chronic kidney disease

  • Chang Kyun Choi
  • Sun-Seog Kweon
  • Young-Hoon Lee
  • Hae-Sung Nam
  • Kyeong-Soo Park
  • So-Yeon Ryu
  • Seong-Woo Choi
  • Sun A. Kim
  • Min-Ho ShinEmail author
Original Article


Levels of vitamin D and parathyroid hormone (PTH) are closely associated with renal function. We evaluated the associations among 25-hydroxyvitamin D (25OHD) levels, PTH levels, and mortality, and whether these associations varied by renal function. We used data from the Dong-gu Study, a population-based cohort in Korean adults. We analyzed the associations among intact PTH, 25OHD levels and mortality in 8580 participants. Hazard ratios (HRs) for mortality were calculated using Cox proportional hazards regression after adjusting for age, sex, month of sampling, lifestyle, and comorbidities. We also evaluated the effects of chronic kidney disease (CKD). A total of 860 deaths occurred during the follow-up period of 7.6 years. Compared to the first 25OHD quartile, the HRs of the second, third, and fourth quartiles were 0.96 [95% confidence interval (CI) 0.79–1.16], 0.84 (95% CI 0.68–1.02), and 0.71 (95% CI 0.57–0.89), respectively. The association between intact PTH levels and mortality varied by renal function, and was both nonlinear and significant only in subjects with CKD. Compared to the second intact PTH quartile in such subjects, the HRs for the first, third, and fourth quartiles were 1.61 (95% CI 0.92–2.81), 1.97 (95% CI 1.17–3.31), and 2.19 (95% CI 1.33–3.59), respectively. In conclusion, we demonstrated that low serum levels of 25OHD are associated with an increased risk of mortality. Serum levels of intact PTH are nonlinearly associated with mortality only in subjects with CKD, with the lowest risk for mortality being evident in the second quartile.


Parathyroid hormone Vitamin D Cohort studies Mortality Renal insufficiency 



This study was supported by a Grant (CRI13904–21) from Chonnam National University Hospital Biomedical Research Institute.

Author’s contributions

Study design: CKC and MHS. Study conduct: CKC and MHS. Data collection: SSK, YHL, HSN, KSP, SYR, SWC, SAK, and MHS. Data interpretation: CKC, SSK, YHL, HSN, KSP, SYR, SWC, SAK, and MHS. Drafting manuscript: CKC, and MHS. Approving final version of manuscript: CKC, SSK, YHL, HSN, KSP, SYR, SWC, SAK, and MHS. MHS takes responsibility for the integrity of the data analysis.

Compliance with ethical standards

Conflict of interest

Chang Kyun Choi, Sun-Seog Kweon, Young-Hoon Lee, Hae-Sung Nam, Kyeong-Soo Park, So-Yeon Ryu, Seong-Woo Choi, Sun A Kim, and Min-Ho Shin declare that they have no conflict of interest.


  1. 1.
    Fraser WD (2009) Hyperparathyroidism. Lancet 374:145–158. CrossRefPubMedGoogle Scholar
  2. 2.
    Bouillon R, Carmeliet G, Verlinden L et al (2008) Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 29:726–776. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Nam H, Kim H-Y, Choi J-S et al (2017) Association between Serum 25-hydroxyvitamin D Levels and Type 2 Diabetes in Korean Adults. Chonnam Med J 53:73–77. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Oh S-H, Kweon S-S, Choi J-S et al (2016) Association between Vitamin D status and risk of peripheral arterial disease: the Dong-gu Study. Chonnam Med J 52:212–216. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lee K (2013) Body composition and vitamin D status: the Korea National Health And Nutrition Examination Survey IV (KNHANES IV). J Hum Nutr Diet 26(Suppl 1):105–113. CrossRefPubMedGoogle Scholar
  6. 6.
    Umehara K, Mukai N, Hata J et al (2017) Association between serum vitamin d and all-cause and cause-specific death in a general japanese population—the Hisayama study. Circ J 81:1315–1321. CrossRefPubMedGoogle Scholar
  7. 7.
    Khaw K-T, Luben R, Wareham N (2014) Serum 25-hydroxyvitamin D, mortality, and incident cardiovascular disease, respiratory disease, cancers, and fractures: a 13-y prospective population study. Am J Clin Nutr 100:1361–1370. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lee DM, Vanderschueren D, Boonen S et al (2014) Association of 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D and parathyroid hormone with mortality among middle-aged and older European men. Age Ageing 43:528–535. CrossRefPubMedGoogle Scholar
  9. 9.
    Schöttker B, Haug U, Schomburg L et al (2013) Strong associations of 25-hydroxyvitamin D concentrations with all-cause, cardiovascular, cancer, and respiratory disease mortality in a large cohort study. Am J Clin Nutr 97:782–793. CrossRefPubMedGoogle Scholar
  10. 10.
    Daraghmeh AH, Bertoia ML, Al-Qadi MO et al (2016) Evidence for the vitamin D hypothesis: the NHANES III extended mortality follow-up. Atherosclerosis 255:96–101. CrossRefPubMedGoogle Scholar
  11. 11.
    Kritchevsky SB, Tooze JA, Neiberg RH et al (2012) 25-Hydroxyvitamin D, parathyroid hormone, and mortality in black and white older adults: the health ABC study. J Clin Endocrinol Metab 97:4156–4165. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lin S-W, Chen W, Fan J-H et al (2012) Prospective study of serum 25-hydroxyvitamin D concentration and mortality in a Chinese population. Am J Epidemiol 176:1043–1050. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Domiciano DS, Machado LG, Lopes JB et al (2016) bone mineral density and parathyroid hormone as independent risk factors for mortality in community-dwelling older adults: a population-based prospective cohort study in brazil. the sao paulo ageing & health (SPAH) study. J Bone Miner Res 31:1146–1157. CrossRefPubMedGoogle Scholar
  14. 14.
    Durazo-Arvizu RA, Dawson-Hughes B, Kramer H et al (2017) the reverse j-shaped association between serum total 25-hydroxyvitamin d concentration and all-cause mortality: the impact of assay standardization. Am J Epidemiol 185:1–7. CrossRefGoogle Scholar
  15. 15.
    Durup D, Jørgensen HL, Christensen J et al (2012) A reverse J-shaped association of all-cause mortality with serum 25-hydroxyvitamin D in general practice: the CopD study. J Clin Endocrinol Metab 97:2644–2652. CrossRefPubMedGoogle Scholar
  16. 16.
    Lourida I, Thompson-Coon J, Dickens CM et al (2015) Parathyroid hormone, cognitive function and dementia: a systematic review. PLoS One 10:e0127574. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rashid G, Bernheim J, Green J, Benchetrit S (2007) Parathyroid hormone stimulates endothelial expression of atherosclerotic parameters through protein kinase pathways. Am J Physiol Renal Physiol 292:F1215–F1218. CrossRefPubMedGoogle Scholar
  18. 18.
    van Ballegooijen AJ, Reinders I, Visser M et al (2013) Serum parathyroid hormone in relation to all-cause and cardiovascular mortality: the Hoorn study. J Clin Endocrinol Metab 98:E638–E645. CrossRefPubMedGoogle Scholar
  19. 19.
    Rhee CM, Molnar MZ, Lau WL et al (2014) Comparative mortality-predictability using alkaline phosphatase and parathyroid hormone in patients on peritoneal dialysis and hemodialysis. Perit Dial Int 34:732–748. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Floege J, Kim J, Ireland E et al (2011) Serum iPTH, calcium and phosphate, and the risk of mortality in a European haemodialysis population. Nephrol Dial Transpl 26:1948–1955. CrossRefGoogle Scholar
  21. 21.
    Liu C-T, Lin Y-C, Lin Y-C et al (2017) Roles of serum calcium, phosphorus, PTH and ALP on mortality in peritoneal dialysis patients: a nationwide, population-based longitudinal study using TWRDS 2005–2012. Sci Rep 7:33. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kweon S-S, Shin M-H, Jeong S-K et al (2014) Cohort profile: the Namwon study and the Dong-gu study. Int J Epidemiol 43:558–567. CrossRefPubMedGoogle Scholar
  23. 23.
    Levey AS, Coresh J, Greene T et al (2006) Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 145:247. CrossRefPubMedGoogle Scholar
  24. 24.
    Afzal S, Brondum-Jacobsen P, Bojesen SE, Nordestgaard BG (2014) Genetically low vitamin D concentrations and increased mortality: mendelian randomisation analysis in three large cohorts. BMJ 349:g6330–g6330. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Pilz S, Grübler M, Gaksch M et al (2016) Vitamin D and mortality. Anticancer Res 36:1379–1387PubMedGoogle Scholar
  26. 26.
    Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281. CrossRefPubMedGoogle Scholar
  27. 27.
    Bergman P, Norlin A-C, Hansen S et al (2012) Vitamin D3 supplementation in patients with frequent respiratory tract infections: a randomised and double-blind intervention study. BMJ Open 2:e001663. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Li YC, Kong J, Wei M et al (2002) 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest 110:229–238. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    van Ballegooijen AJ, Kestenbaum B, Sachs MC et al (2014) Association of 25-hydroxyvitamin D and parathyroid hormone with incident hypertension: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol 63:1214–1222. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bover J, Ureña P, Brandenburg V et al (2014) Adynamic bone disease: from bone to vessels in chronic kidney disease. Semin Nephrol 34:626–640. CrossRefPubMedGoogle Scholar
  31. 31.
    Parfitt AM (2003) Renal bone disease: a new conceptual framework for the interpretation of bone histomorphometry. Curr Opin Nephrol Hypertens 12:387–403. CrossRefPubMedGoogle Scholar
  32. 32.
    Kurz P, Monier-Faugere MC, Bognar B et al (1994) Evidence for abnormal calcium homeostasis in patients with adynamic bone disease. Kidney Int 46:855–861CrossRefPubMedGoogle Scholar
  33. 33.
    Reid IR, Bolland MJ, Grey A (2010) Does calcium supplementation increase cardiovascular risk? Clin Endocrinol (Oxf) 73:689–695. CrossRefGoogle Scholar
  34. 34.
    Tomaschitz A, Ritz E, Pieske B et al (2014) Aldosterone and parathyroid hormone interactions as mediators of metabolic and cardiovascular disease. Metab Clin Exp 63:20–31. CrossRefPubMedGoogle Scholar
  35. 35.
    Dharnidharka VR, Kwon C, Stevens G (2002) Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 40:221–226. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Chang Kyun Choi
    • 1
  • Sun-Seog Kweon
    • 1
  • Young-Hoon Lee
    • 2
  • Hae-Sung Nam
    • 3
  • Kyeong-Soo Park
    • 4
  • So-Yeon Ryu
    • 5
  • Seong-Woo Choi
    • 5
  • Sun A. Kim
    • 1
  • Min-Ho Shin
    • 1
    Email author
  1. 1.Department of Preventive MedicineChonnam National University Medical SchoolHwasunKorea
  2. 2.Department of Preventive Medicine & Institute of Wonkwang Medical ScienceWonkwang University College of MedicineIksanRepublic of Korea
  3. 3.Department of Preventive MedicineChungnam National University Medical SchoolDaejeonRepublic of Korea
  4. 4.Cardiocerebrovascular CenterMokpo Jung-Ang HospitalMokpoRepublic of Korea
  5. 5.Department of Preventive MedicineChosun University Medical SchoolGwangjuRepublic of Korea

Personalised recommendations