Differences in the relation between bone mineral content and lean body mass according to gender and reproductive status by age ranges

  • Edgar Denova-Gutiérrez
  • Patricia Clark
  • Ricardo Francisco Capozza
  • Laura Marcela Nocciolino
  • Jose Luis Ferretti
  • Rafael Velázquez-Cruz
  • Berenice Rivera
  • Gustavo Roberto Cointry
  • Jorge Salmerón
Original Article


The present study aims: (1) to explore the influence of lean mass (LM) on bone mineral content (BMC), (2) to investigate the pubertal influences on the BMC–LM relation, and (3) to perform Z-score charts of BMC–LM relation, stratified by gender and reproductive status categorized by age ranges. A cross-sectional analysis was conducted using 4001 healthy subjects between 7 and 90 years participating in the Health Workers Cohort Study. Of these, 720 participants were ≤ 19 years, 2417 were women ≥ 20 years, and 864 were men ≥ 20 years. Using Dual X-ray absorptiometry (DXA), we measured BMC and LM. Participants’ pubertal development was assessed according to Tanner’s stage scale. To describe BMC–LM relation, simple correlation coefficients were computed. To produce best-fit equations, an ANOVA test was conducted. Z-score graphs for the BMC–LM relation were obtained. In general, the BMC–LM correlations were linear and highly significant. For boys, curves were virtually parallel, with similar intercepts and a progressive displacement of values toward the upper-right region of the graph, for each Tanner subgroup. For girls, curves for Tanner 1-2 and 4-5 stages were parallel; but, in girls Tanner 4-5, the intercepts were significantly higher by about +300–400 g of BMC (P < 0.001). For postmenopausal women, the curve was parallel to that for the premenopausal but showed a lower intercept (P < 0.001). We provide DXA reference data on a well-characterized cohort of 4001 healthy subjects. These reference curves provide a reference value for the assessment and monitoring of bone health in all age groups included in the present study.


Bone mineral content Lean mass Muscle–bone relation Tanner stage 



The original study was supported by Consejo Nacional de Ciencia y Tecnología (Grant: 87783, and Grant: 7876) Mexico City.

Author Contributions

The authors’ responsibilities were as follows: ED-G and JS designed the study and secured funding; ED-G, RV-C, BR, and JS conducted the research; RFC, LMN, JLF, and GRC performed the statistical analyses; EDG and GRC wrote the manuscript; EDG, PC, JLF, and GRC critically reviewed the manuscript. All authors reviewed and commented on the manuscript. All authors read and approved the final version of the paper.

Compliance with ethical standards

Conflict of interest

All authors have no conflicts of interest.

Statement of human and animal rights

The present study was conducted according to the Declaration of Helsinki guidelines. The ethics and research committees of all participating institutions [Comité de Ética e Investigación, Instituto Mexicano del Seguro Social (No. 12CEI0900614); Comité de Ética e Investigación, Instituto Nacional de Salud Pública (No.13CEI1700736); Comité de Ética, Centro de Investigación en Ciencias Médicas (No.1233008X0236)] reviewed and approved the study protocol and informed consent forms.

Informed consent

Signed written informed consent was previously obtained from all participants.

Supplementary material

774_2018_978_MOESM1_ESM.docx (143 kb)
Supplementary material 1 (DOCX 142 kb)
774_2018_978_MOESM2_ESM.pptx (449 kb)
Supplementary material 2 (PPTX 449 kb)


  1. 1.
    Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, Weaver C (2000) Peak bone mass. Osteoporos Int 11:985–1009CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Baxter-Jones AD, Faulkner RA, Forwood MR, Mirwald RL, Bailey DA (2011) Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res 26:1729–1739CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Rizzoli R, Bianchi ML, Garabedian M, McKay HA, Moreno LA (2010) Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 46:294–305CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Mosca LN, Goldberg TB, da Silva V, da Silva CC, Kurokawa CS, Bisi Rizzo AC, Corrente JE (2014) Excess body fat negatively affects bone mass in adolescents. Nutrition 30:847–852CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Iwaniec UT, Turner RT (2016) Influence of body weight on bone mass, architecture and turnover. J Endocrinol 230:R115–R130CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Ferretti JL, Capozza RF, Cointry GR, García SL, Plotkin H, Alvarez Filgueira ML, Zanchetta JR (1998) Gender-related differences in the relationship between densitometric values of whole-body bone mineral content and lean body mass in humans between 2 and 87 years of age. Bone 22:683–690CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Capozza RF, Cure-Cure C, Cointry GR, Meta M, Cure P, Rittweger J, Ferretti JL (2008) Association between low lean body mass and osteoporotic fractures after menopause. Menopause 15:905–913CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Zemel BS, Kalkwarf HJ, Gilsanz V, Lappe JM, Oberfield S, Shepherd JA, Frederick MM, Huang X, Lu M, Mahboubi S, Hangartner T, Winer KK (2011) Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: results of the bone mineral density in childhood study. J Clin Endocrinol Metab 96:3160–3169CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Guo B, Wu Q, Gong J, Xiao Z, Tang Y, Shang J, Cheng Y, Xu H (2016) Relationships between the lean mass index and bone mass and reference values of muscular status in healthy Chinese children and adolescents. J Bone Miner Metab 34:703–713CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Somay-Rendu E, Duboeuf F, Boutroy S, Chapurlat RD (2017) Muscle mass is associated with incident fracture in postmenopausal women: the OFELY study. Bone 94:108–113CrossRefGoogle Scholar
  11. 11.
    Reina P, Cointry GR, Nocciolino L, Feldman S, Ferretti JL, Rittweger J, Capozza RF (2015) Analysis of the independent power of age-related, anthropometric and mechanical factors as determinants of the structure of radius and tibia in normal adults. A pQCT study. J Musculoskel Neuron Interact 15:10–22Google Scholar
  12. 12.
    Reider L, Beck T, Alley D, Miller R, Shardell M, Schumacher J, Magaziner J, Cawthon PM, Barbour KE, Cauley JA, Harris T (2016) Evaluating the relationship between muscle and bone modeling response. Bone 90:152–158CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Berg RM, Wallaschofski H, Nauck M, Rettig R, Markus MR, Laqua R, Friedrich N, Hannemann A (2015) Positive association between adipose tissue and bone stiffness. Calcif Tissue Int 97:40–49CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Schorr M, Dichtel LE, Gerweck AV, Torriani M, Miller KK, Bredella MA (2016) Body composition of skeletal integrity in obesity. Skeletal Radiol 45:813–819CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Vaikeviciute D, Lätt E, Mäestu J, Jürimae T, Saar M, Purge P, Maasalu K, Jürimae J (2016) Longitudinal associations between bone and adipose tissue biochemical markers with bone mineralization in boys during puberty. BMC Pediatr 16:102. CrossRefGoogle Scholar
  16. 16.
    Klein KO, Newfield RS, Hassink SG (2016) Bone maturation along the spectrum from normal weight to obesity: a complex interplay of sex, growth factors and weight gain. J Pediatr Endocrinol Metab 29:311–318CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Frost HM (2003) Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 275:1081–1101CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Almeida M, Laurent MR, Dubois V, Claessens F, O’Brien CA, Bouillon R, Vanderschueren D, Manolagas S (2017) Estrogens and androgens in skeletal physiology and pathophysiology. Physiol Rev 97:135–187CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Doyle F, Brown J, Lachance C (1970) Relation between bone mass and muscle weight. Lancet 1:391–3933CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Cure-Cure C, Capozza RF, Cointry GR, Meta M, Cure-Ramírez P, Ferretti JL (2005) Reference charts for the relationships between dual-energy X-ray absoptiometry-assessed bone mineral content and lean mass in 3063 healthy men and premenopausal and postmenopausal women. Osteopor Int 16:2095–2106CrossRefGoogle Scholar
  21. 21.
    Frost HM (2001) Cybernetic aspects of bone modeling and remodeling, with special reference to osteoporosis and whole-bone strength. Am J Hum Biol 13:235–248CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Schönau E, Frost HM (2002) The “muscle-bone unit” in children and adolescents. Calcif Tissue Int 70:405–407CrossRefGoogle Scholar
  23. 23.
    Denova-Gutiérrez E, Flores YN, Gallegos-Carrillo K, Ramírez-Palacios P, Rivera-Paredez B, Muñoz-Aguirre P, Velázquez-Cruz R, Torres-Ibarra L, Meneses-León J, Méndez-Hernández P, Hernández-López R, Salazar-Martínez E, Talavera JO, Tamayo J, Castañón S, Osuna-Ramírez I, León-Maldonado L, Flores M, Macías N, Antúnez D, Huitrón-Bravo G, Salmerón J (2016) Health workers cohort study: methods and study design. Salud Publica Mex 58:708–716CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Clark P, Denova-Gutiérrez E, Ambrosi R, Szulc P, Rivas-Ruiz R, Salmerón J (2016) Reference values of total lean mass, appendicular lean mass, and fat mass measured with dual-energy X-ray absorptiometry in a healthy Mexican population. Calcif Tissue Int 99:462–471CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Denova-Gutiérrez E, Clark P, Tucker KL, Muñoz-Aguirre P, Salmerón J (2016) Dietary patterns are associated with bone mineral density in an urban Mexican adult population. Osteoporos Int 27:3033–3040CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Denova-Gutiérrez E, Castañón S, Talavera JO, Flores M, Macías N, Rodríguez-Ramírez S, Flores YN, Salmerón J (2011) Dietary patterns are associated with different indexes of adiposity and obesity in an urban Mexican population. J Nutr 141:921–927CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Muñoz-Aguirre P, Denova-Gutiérrez E, Flores M, Salazar-Martínez E, Salmerón J (2016) High vitamin D consumption is inversely associated with cardiovascular disease risk in an urban Mexican population. PLoS One 11:e0166869. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tanner JM (1986) Normal growth and techniques of growth assessment. Clin Endocrinol Metab 15:411–451CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Frost HM (1999) On the estrogen-bone relationship and postmenopausal bone loss: a new model. J Bone Miner Res 14:1473–1477CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Zemel BS (2013) Bone mineral accretion and its relationship to growth, sexual maturation and body composition during childhood and adolescence. World Rev Nutr Diet 106:39–45PubMedPubMedCentralGoogle Scholar
  31. 31.
    Weeks BK, Beck BR (2010) The relationship between physical activity and bone during adolescence differs according to sex and biological maturity. J Osteoporos 2010:546593CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Macdonald H, Kontulainen S, Petit M, Janssen P, McKay H (2006) Bone strength and its determinants in pre- and early pubertal boys and girls. Bone 39:598–608CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Järvinen TL, Kannus P, Sievänen H (2003) Estrogen and bone—a reproductive and locomotive perspective. J Bone Miner Res 18:1921–1931CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Ferretti JL (2001) Dual-energy X-ray absorptiometry. In: Preedy VR, Peters YJ (eds) Skeletal muscle: pathology, diagnosis and management of disease. Greenwich, London, pp 451–458Google Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Edgar Denova-Gutiérrez
    • 1
  • Patricia Clark
    • 2
    • 3
  • Ricardo Francisco Capozza
    • 4
  • Laura Marcela Nocciolino
    • 4
  • Jose Luis Ferretti
    • 4
  • Rafael Velázquez-Cruz
    • 5
  • Berenice Rivera
    • 6
  • Gustavo Roberto Cointry
    • 4
  • Jorge Salmerón
    • 6
    • 7
  1. 1.Centro de Investigación en Nutrición y SaludInstituto Nacional de Salud PúblicaCuernavacaMexico
  2. 2.Unidad de Investigación en Epidemiología ClínicaHospital Infantil de México Federico GómezMexico CityMexico
  3. 3.Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  4. 4.Centro de Estudios de Metabolismo FosfocálcicoUniversidad Nacional de RosarioRosarioArgentina
  5. 5.Laboratorio de Genómica del Metabolismo ÓseoInstituto Nacional de Medicina GenómicaMexico CityMexico
  6. 6.Unidad Académica en Investigación EpidemiológicaCentro de Investigación en Políticas, Población y Salud, Facultad de Medicina, Universidad Nacional Autónoma de MéxicoMexico CityMexico
  7. 7.Centro de Investigación en Salud PoblacionalInstituto Nacional de Salud PúblicaCuernavacaMexico

Personalised recommendations