Evaluation of ostarine as a selective androgen receptor modulator in a rat model of postmenopausal osteoporosis

  • D. B. Hoffmann
  • M. Komrakova
  • S. Pflug
  • M. von Oertzen
  • D. Saul
  • L. Weiser
  • T. A. Walde
  • M. Wassmann
  • A. F. Schilling
  • W. Lehmann
  • S. Sehmisch
Original Article


Selective androgen receptor modulators (SARMs) have shown beneficial effects on muscle wasting, general physical function and bone properties in male mammals. However, data on the effects of SARMs in postmenopausal osteoporotic bone are scarce. We evaluated the effects of the SARM drug ostarine on postmenopausal osteoporotic bone in a rat osteoporosis model. Ovariectomy was performed on 46 of 56 3-month-old female Sprague–Dawley rats. Eight weeks after ovariectomy, ostarine was orally administered daily for 5 weeks in dosages of 0.04 (low, OVX + Ost. 0.04), 0.4 (intermediate, OVX + Ost. 0.4), and 4 mg/kg (high, OVX + Ost. 4) body weight. Another ovariectomized group received no ostarine. Lumbar vertebrae and femora were removed for biomechanical, gene expression, ashing, and computer tomography analyses. Low dose showed no effects. The effects of intermediate and high doses were comparable overall. Improvements were mainly seen in structural properties such as bone mineral density and bone volume density. However, the effects in femora were superior to effects in vertebrae. Ostarine treatment for 5 weeks did not improve significantly biomechanical properties. mRNA expression of the receptor activator of NF-κB ligand decreased after treatment, and uterine weight increased. Serum levels of phosphorus increased following ostarine treatment in intermediate and high-dose groups. Short-term treatment of osteoporotic bone with ostarine leads to improvement of several microstructural bone indices. While we did not observe changes in biomechanics, it is conceivable that longer treatment may also improve biomechanical properties. Further studies are needed to characterize longer time effects and side effects of ostarine in osteoporosis.


Osteoporosis SARM Ostarine Rat model of osteoporosis 



Alkaline phosphatase


Bone mineral density


Bone volume density


Body weight




Estrogen receptor alpha


Maximal load


Trabecular nodes








Receptor activator of NF-κB ligand




Selective androgen receptor modulator


Selective estrogen receptor modulator


Tartrate-resistant acid phosphatase


Trabecular spacing

Trabecular thickness


Trabecular thickness (2-Dscan)



The present study was funded by the German Research Foundation (DFG SE 1966/6-1, KO 4646/3-1). The authors are grateful to R. Castro-Machguth and A. Witt for technical support.

Compliance with ethical standards

Conflict of interest

All authors have no conflicts of interest.


  1. 1.
    Duquet N (2014) Osteoporosis: treatment and pharmaceutical care. J Pharm Belg 2:14–24Google Scholar
  2. 2.
    Osterkamp R (2005) Population developments in Germany until 2050. Chirurg 76:10–18CrossRefPubMedGoogle Scholar
  3. 3.
    Papaioannou A, Morin S, Cheung AM, Atkinson S, Brown JP, Feldman S, Hanley DA, Hodsman A, Jamal SA, Kaiser SM, Kvern B (2010) 2010 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada: summary. CMAJ 182:1864–1873CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results. From the Women’s Health Initiative randomized controlled trial. JAMA 288:321–333CrossRefPubMedGoogle Scholar
  5. 5.
    Chlebowski RT, Kuller LH, Prentice RL, Stefanick ML, Manson JE, Gass M, Aragaki AK, Ockene JK, Lane DS, Sarto GE, Rajkovic A (2009) Breast cancer after use of estrogen plus progestin in postmenopausal women. N Engl J Med 360:573–587CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Muchmore DB (2000) Raloxifene: a selective estrogen receptor modulator (SERM) with multiple target system effects. Oncologist 5:388–392CrossRefPubMedGoogle Scholar
  7. 7.
    Ettinger B, Black DM, Mitlak BH, Knickerbocker RK, Nickelsen T, Genant HK, Christiansen C, Delmas PD, Zanchetta JR, Stakkestad J, Glüer CC (1999) Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA 282:637–645CrossRefPubMedGoogle Scholar
  8. 8.
    Kanis JA, Johansson H, Oden A, McCloskey EV (2010) A meta-analysis of the efficacy of raloxifene on all clinical and vertebral fractures and its dependency on FRAX. Bone 47:729–735CrossRefPubMedGoogle Scholar
  9. 9.
    An KC (2016) Selective estrogen receptor modulators. Asian Spine J. 10:787–791CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Anderson FH, Francis RM, Faulkner K (1996) Androgen supplementation in eugonadal men with osteoporosis-effects of 6 months of treatment on bone mineral density and cardiovascular risk factors. Bone 18:171–177CrossRefPubMedGoogle Scholar
  11. 11.
    Tobias JH, Gallagher A, Chambers TJ (1994) 5 alpha-dihydrotestosterone partially restores cancellous bone volume in osteopenic ovariectomized rats. Am J Physiol 267:E853–E859PubMedGoogle Scholar
  12. 12.
    Katznelson L, Finkelstein JS, Schoenfeld DA, Rosenthal DI, Anderson EJ, Klibanski A (1996) Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism. J Clin Endocrinol Metab 81:4358–4365PubMedGoogle Scholar
  13. 13.
    Lea CK, Flanagan AM (1998) Physiological plasma levels of androgens reduce bone loss in the ovariectomized rat. Am J Physiol 274:E328–E335PubMedGoogle Scholar
  14. 14.
    Amory JK, Watts NB, Easley KA, Sutton PR, Anawalt BD, Matsumoto AM, Bremner WJ, Tenover JL (2004) Exogenous testosterone or testosterone with finasteride increases bone mineral density in older men with low serum testosterone. J Clin Endocrinol Metab 89:503–510CrossRefPubMedGoogle Scholar
  15. 15.
    Otto-Duessel M, He M, Jones JO (2012) Tissue-selective regulation of androgen-responsive genes. Endocr Res 37:203–215CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Dobs AS, Boccia RV, Croot CC, Gabrail NY, Dalton JT, Hancock ML, Johnston MA, Steiner MS (2013) Effects of enobosarm on muscle wasting and physical function in patients with cancer: a double-blind, randomised controlled phase 2 trial. Lancet Oncol 14:335–345CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Dalton JT, Barnette KG, Bohl CE, Hancock ML, Rodriguez D, Dodson ST, Morton RA, Steiner MS (2011) The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial. J Cachexia Sarcopenia Muscle 2:153–161CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Girgis CM, Mokbel N, Digirolamo DJ (2014) Therapies for musculoskeletal disease: can we treat two birds with one stone? Curr Osteoporos Rep 12:142–153CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhang X, Lanter JC, Sui Z (2009) Recent advances in the development of selective androgen receptor modulators. Expert Opin Ther Pat 19:1239–1258CrossRefPubMedGoogle Scholar
  20. 20.
    Kearbey JD, Gao W, Narayanan R, Fisher SJ, Wu D, Miller DD, Dalton JT (2007) Selective androgen receptor modulator (SARM) treatment prevents bone loss and reduces body fat in ovariectomized rats. Pharm Res 24:328–335CrossRefPubMedGoogle Scholar
  21. 21.
    Kearbey JD, Gao W, Fisher SJ, Wu D, Miller DD, Dalton JT (2009) Effects of selective androgen receptor modulator (SARM) treatment in osteopenic female rats. Pharm Res 26:2471–2477CrossRefPubMedGoogle Scholar
  22. 22.
    Vajda EG, Hogue A, Griffiths KN, Chang WY, Burnett K, Chen Y, Marschke K, Mais DE, Pedram B, Shen Y, van Oeveren A (2009) Combination treatment with a selective androgen receptor modulator q(SARM) and a bisphosphonate has additive effects in osteopenic female rats. J Bone Miner Res 24:231–240CrossRefPubMedGoogle Scholar
  23. 23.
    Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15:175–191CrossRefPubMedGoogle Scholar
  24. 24.
    Sehmisch S, Erren M, Rack T, Tezval M, Seidlova-Wuttke D, Richter J, Wuttke W, Stuermer KM, Stuermer EK (2009) Short-term effects of parathyroid hormone on rat lumbar vertebrae. Spine (Phila Pa 1976) 34:2014–2021CrossRefGoogle Scholar
  25. 25.
    Tezval M, Stuermer EK, Sehmisch S, Rack T, Stary A, Stebener M, Konietschke F, Stuermer KM (2010) Improvement of trochanteric bone quality in an osteoporosis model after short-term treatment with parathyroid hormone: a new mechanical test for trochanteric region of rat femur. Osteoporos Int 21:251–261CrossRefPubMedGoogle Scholar
  26. 26.
    Sehmisch S, Erren M, Kolios L, Tezval M, Seidlova-Wuttke D, Wuttke W, Stuermer KM, Stuermer EK (2010) Effects of isoflavones equol and genistein on bone quality in a rat osteopenia model. Phytother Res 24:S168–S174CrossRefPubMedGoogle Scholar
  27. 27.
    Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28:2–17CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    CEN (2002) European committee for standardization. Determination of calcium and magnesium. EN ISO 7980Google Scholar
  29. 29.
    CEN (2004) European committee for standardization. Determination of orthophosphate. EN ISO 6878Google Scholar
  30. 30.
    Hoffmann DB, Griesel MH, Brockhusen B, Tezval M, Komrakova M, Menger B, Wassmann M, Stuermer KM, Sehmisch S (2016) Effects of 8-prenylnaringenin and whole-body vibration therapy on a rat model of osteopenia. J Nutr Metab 2016:6893137CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Komrakova M, Hoffmann DB, Nuehnen V, Stueber H, Wassmann M, Wicke M, Tezval M, Stuermer KM, Sehmisch S (2016) The effect of vibration treatments combined with teriparatide or strontium ranelate on bone healing and muscle in ovariectomized rats. Calcif Tissue Int 99:408–422CrossRefPubMedGoogle Scholar
  32. 32.
    Tezval M, Hansen S, Schmelz U, Komrakova M, Stuermer KM, Sehmisch S (2014) Effect of urocortin on strength and microarchitecture of osteopenic rat femur. J Bone Miner Metab 33:154–160CrossRefPubMedGoogle Scholar
  33. 33.
    Chen H, Zhou X, Fujita H, Onozuka M, Kubo KY (2013) Age-related changes in trabecular and cortical bone microstructure. Int J Endocrinol 2013:213234PubMedPubMedCentralGoogle Scholar
  34. 34.
    Ritzel H, Amling M, Posl M, Hahn M, Delling G (1997) The thickness of human vertebral cortical bone and its changes in aging and osteoporosis: a histomorphometric analysis of the complete spinal column from thirty-seven autopsy specimens. J Bone Miner Res 12:89–95CrossRefPubMedGoogle Scholar
  35. 35.
    Amling M, Posl M, Ritzel H, Hahn M, Vogel M, Wening VJ, Delling G (1996) Architecture and distribution of cancellous bone yield vertebral fracture clues. A histomorphometric analysis of the complete spinal column from 40 autopsy specimens. Arch Orthop Trauma Surg 115:262–269CrossRefPubMedGoogle Scholar
  36. 36.
    Kavuncu V, Sahin S, Baydas G, Ilhan N, Ozercan I, Yasar A, Pekkutucu I, Ilhan N, Ozercan R (2003) A comparison of estrogen and two different doses of calcitonin in ovariectomized rats. Yonsei Med J 44:508–516CrossRefPubMedGoogle Scholar
  37. 37.
    Nair AB, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7:27–31CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    USFDA (2005) Guidance for industry: estimating the maximum safe starting dose in adult healthy volunteer. US Food and Drug AdministrationGoogle Scholar
  39. 39.
    Jones A, Hwang DJ, Duke CB 3rd, He Y, Siddam A, Miller DD, Dalton JT (2010) Nonsteroidal selective androgen receptor modulators enhance female sexual motivation. J Pharmacol Exp Ther 334:439–448CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Furuya K, Yamamoto N, Ohyabu Y, Morikyu T, Ishige H, Albers M, Endo Y (2013) Mechanism of the tissue-specific action of the selective androgen receptor modulator S-101479. Biol Pharm Bull 36:442–451CrossRefPubMedGoogle Scholar
  41. 41.
    Nagata N, Furuya K, Oguro N, Nishiyama D, Kawai K, Yamamoto N, Ohyabu Y, Satsukawa M, Miyakawa M (2014) Lead evaluation of tetrahydroquinolines as nonsteroidal selective androgen receptor modulators for the treatment of osteoporosis. ChemMedChem 9:197–206CrossRefPubMedGoogle Scholar
  42. 42.
    Scialla JJ, Wolf M (2014) Roles of phosphate and fibroblast growth factor 23 in cardiovascular disease. Nat Rev Nephrol 10:268–278CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • D. B. Hoffmann
    • 1
  • M. Komrakova
    • 1
  • S. Pflug
    • 1
  • M. von Oertzen
    • 1
  • D. Saul
    • 1
  • L. Weiser
    • 1
  • T. A. Walde
    • 1
  • M. Wassmann
    • 2
  • A. F. Schilling
    • 1
  • W. Lehmann
    • 1
  • S. Sehmisch
    • 1
  1. 1.Department of Trauma-, Orthopaedic- and Plastic SurgeryUniversity Medical Center GoettingenGoettingenGermany
  2. 2.Department of Medical Microbiology, Subdivision of General Hygiene and Environmental HealthUniversity of GoettingenGoettingenGermany

Personalised recommendations