Advertisement

Journal of Bone and Mineral Metabolism

, Volume 36, Issue 6, pp 679–690 | Cite as

Tumor necrosis factor receptor-associated factor 6 is required to inhibit foreign body giant cell formation and activate osteoclasts under inflammatory and infectious conditions

  • Akihito Oya
  • Eri Katsuyama
  • Mayu Morita
  • Yuiko Sato
  • Tami Kobayashi
  • Kana Miyamoto
  • Toru Nishiwaki
  • Atsushi Funayama
  • Yoshinari Fujita
  • Takashi Kobayashi
  • Morio Matsumoto
  • Masaya Nakamura
  • Arihiko Kanaji
  • Takeshi Miyamoto
Original Article
  • 176 Downloads

Abstract

Osteoclasts and foreign body giant cells (FBGCs) are derived from common progenitors and share properties such as multi-nucleation capacity induced by cell–cell fusion; however, mechanisms underlying lineage determination between these cells remain unclear. Here we show that, under inflammatory conditions, osteoclasts are stimulated in a manner similar to M1 macrophages, while formation of FBGCs, which exhibit M2-like phenotypes, is inhibited in a manner similar to that seen in M1/M2 macrophage polarization. FBGC/osteoclast polarization was inhibited by conditional knockout of tumor necrosis factor receptor associated factor 6 (Traf6) in adults in vivo and in vitro. Traf6-null mice were previously reported to die soon after birth, but we found that Traf6 deletion in adults did not cause lethality but rather inhibited osteoclast activation and prevented FBGC inhibition under inflammatory conditions. Accordingly, basal osteoclastogenesis was significantly inhibited by Traf6 deletion in vivo and in vitro and accompanied by increased bone mass. Lipopolysaccharide-induced osteoclast formation and osteolysis were significantly inhibited in Traf6 conditional knockout mice. Our results suggest that Traf6 plays a crucial role in regulating M1 osteoclast and M2 FBGC polarization and is a potential therapeutic target in blocking FBGC inhibition, antagonizing osteolysis in inflammatory conditions, and increasing bone mass without adverse effects in adults.

Keywords

Tumor necrosis factor receptor associated factor 6 Foreign body reaction Osteoclasts Foreign body giant cells Adult 

Notes

Acknowledgements

T. Miyamoto was supported by a grant from the Japan Agency for Medical Research and Development and a grant-in-aid for Scientific Research in Japan. K. Miyamoto and Y. Sato were supported by a grant-in-aid for Scientific Research in Japan. This study was supported in part by a grant from the Translational Research Network Program and a grant-in-aid for Scientific Research.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest directly relevant to the content of this article.

Supplementary material

774_2017_890_MOESM1_ESM.pdf (801 kb)
Supplementary material 1 (PDF 800 kb)

References

  1. 1.
    Marwick C (2000) Implant recommendations (in Eng). JAMA 283:869CrossRefGoogle Scholar
  2. 2.
    Tang L, Eaton JW (1995) Inflammatory responses to biomaterials (in Eng). Am J Clin Pathol 103:466–471CrossRefGoogle Scholar
  3. 3.
    Tang L, Eaton JW (1999) Natural responses to unnatural materials: a molecular mechanism for foreign body reactions (in Eng). Mol Med 5:351–358CrossRefGoogle Scholar
  4. 4.
    Anderson JM (1988) Inflammatory response to implants (in Eng). ASAIO Trans 34:101–107CrossRefGoogle Scholar
  5. 5.
    Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials (in Eng). Semin Immunol 20:86–100.  https://doi.org/10.1016/j.smim.2007.11.004 CrossRefPubMedGoogle Scholar
  6. 6.
    Aronson M, Elberg SS (1962) Fusion of peritoneal histocytes with formation of giant cells (in Eng). Nature 193:399–400CrossRefGoogle Scholar
  7. 7.
    Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N, Morita K, Ninomiya K, Suzuki T, Miyamoto K, Oike Y, Takeya M, Toyama Y, Suda T (2005) DC-STAMP is essential for cell–cell fusion in osteoclasts and foreign body giant cells (in Eng). J Exp Med 202:345–351.  https://doi.org/10.1084/jem.20050645 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yagi M, Ninomiya K, Fujita N, Suzuki T, Iwasaki R, Morita K, Hosogane N, Matsuo K, Toyama Y, Suda T, Miyamoto T (2007) Induction of DC-STAMP by alternative activation and downstream signaling mechanisms (in Eng). J Bone Miner Res 22:992–1001.  https://doi.org/10.1359/jbmr.070401 CrossRefPubMedGoogle Scholar
  9. 9.
    Lee SH, Rho J, Jeong D, Sul JY, Kim T, Kim N, Kang JS, Miyamoto T, Suda T, Lee SK, Pignolo RJ, Koczon-Jaremko B, Lorenzo J, Choi Y (2006) v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation (in Eng). Nat Med 12:1403–1409.  https://doi.org/10.1038/nm1514 CrossRefPubMedGoogle Scholar
  10. 10.
    Saginario C, Sterling H, Beckers C, Kobayashi R, Solimena M, Ullu E, Vignery A (1998) MFR, a putative receptor mediating the fusion of macrophages (in Eng). Mol Cell Biol 18:6213–6223CrossRefGoogle Scholar
  11. 11.
    Han X, Sterling H, Chen Y, Saginario C, Brown EJ, Frazier WA, Lindberg FP, Vignery A (2000) CD47, a ligand for the macrophage fusion receptor, participates in macrophage multinucleation (in Eng). J Biol Chem 275:37984–37992.  https://doi.org/10.1074/jbc.M002334200 CrossRefPubMedGoogle Scholar
  12. 12.
    Sterling H, Saginario C, Vignery A (1998) CD44 occupancy prevents macrophage multinucleation (in Eng). J Cell Biol 143:837–847CrossRefGoogle Scholar
  13. 13.
    Cui W, Ke JZ, Zhang Q, Ke HZ, Chalouni C, Vignery A (2006) The intracellular domain of CD44 promotes the fusion of macrophages (in Eng). Blood 107:796–805.  https://doi.org/10.1182/blood-2005-05-1902 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Helming L, Gordon S (2009) Molecular mediators of macrophage fusion (in Eng). Trends Cell Biol 19:514–522.  https://doi.org/10.1016/j.tcb.2009.07.005 CrossRefPubMedGoogle Scholar
  15. 15.
    Miyamoto H, Suzuki T, Miyauchi Y, Iwasaki R, Kobayashi T et al (2012) Osteoclast stimulatory transmembrane protein and dendritic cell-specific transmembrane protein cooperatively modulate cell–cell fusion to form osteoclasts and foreign body giant cells (in Eng). J Bone Miner Res 27:1289–1297.  https://doi.org/10.1002/jbmr.1575 CrossRefPubMedGoogle Scholar
  16. 16.
    Zhao Q, Topham N, Anderson JM, Hiltner A, Lodoen G, Payet CR (1991) Foreign-body giant cells and polyurethane biostability: in vivo correlation of cell adhesion and surface cracking (in Eng). J Biomed Mater Res 25:177–183.  https://doi.org/10.1002/jbm.820250205 CrossRefPubMedGoogle Scholar
  17. 17.
    MacLauchlan S, Skokos EA, Meznarich N, Zhu DH, Raoof S, Shipley JM, Senior RM, Bornstein P, Kyriakides TR (2009) Macrophage fusion, giant cell formation, and the foreign body response require matrix metalloproteinase 9 (in Eng). J Leukoc Biol 85:617–626.  https://doi.org/10.1189/jlb.1008588 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Katsuyama E, Miyamoto H, Kobayashi T, Sato Y, Hao W, Kanagawa H, Fujie A, Tando T, Watanabe R, Morita M, Miyamoto K, Niki Y, Morioka H, Matsumoto M, Toyama Y, Miyamoto T (2015) Interleukin-1 receptor-associated kinase-4 (IRAK4) promotes inflammatory osteolysis by activating osteoclasts and inhibiting formation of foreign body giant cells. J Biol Chem 290:716–726.  https://doi.org/10.1074/jbc.M114.568360 CrossRefPubMedGoogle Scholar
  19. 19.
    Mantovani A, Sica A, Locati M (2005) Macrophage polarization comes of age (in Eng). Immunity 23:344–346.  https://doi.org/10.1016/j.immuni.2005.10.001 CrossRefPubMedGoogle Scholar
  20. 20.
    Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity (in Eng). Nat Rev Immunol 11:750–761.  https://doi.org/10.1038/nri3088 CrossRefPubMedGoogle Scholar
  21. 21.
    Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas (in Eng). J Clin Invest 122:787–795.  https://doi.org/10.1172/jci59643 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Scudiero I, Zotti T, Ferravante A, Vessichelli M, Vito P, Stilo R (2011) Alternative splicing of CARMA2/CARD14 transcripts generates protein variants with differential effect on NF-kappaB activation and endoplasmic reticulum stress-induced cell death (in Eng). J Cell Physiol 226:3121–3131.  https://doi.org/10.1002/jcp.22667 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zotti T, Uva A, Ferravante A, Vessichelli M, Scudiero I, Ceccarelli M, Vito P, Stilo R (2011) TRAF7 protein promotes Lys-29-linked polyubiquitination of IkappaB kinase (IKKgamma)/NF-kappaB essential modulator (NEMO) and p65/RelA protein and represses NF-kappaB activation (in Eng). J Biol Chem 286:22924–22933.  https://doi.org/10.1074/jbc.M110.215426 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zotti T, Vito P, Stilo R (2012) The seventh ring: exploring TRAF7 functions (in Eng). J Cell Physiol 227:1280–1284.  https://doi.org/10.1002/jcp.24011 CrossRefPubMedGoogle Scholar
  25. 25.
    Wajant H, Grell M, Scheurich P (1999) TNF receptor associated factors in cytokine signaling (in Eng). Cytokine Growth Factor Rev 10:15–26CrossRefGoogle Scholar
  26. 26.
    Inoue J, Ishida T, Tsukamoto N, Kobayashi N, Naito A, Azuma S, Yamamoto T (2000) Tumor necrosis factor receptor-associated factor (TRAF) family: adapter proteins that mediate cytokine signaling (in Eng). Exp Cell Res 254:14–24.  https://doi.org/10.1006/excr.1999.4733 CrossRefPubMedGoogle Scholar
  27. 27.
    Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C et al (1999) TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling (in Eng). Genes Dev 13:1015–1024CrossRefGoogle Scholar
  28. 28.
    Naito A, Azuma S, Tanaka S, Miyazaki T, Takaki S, Takatsu K, Nakao K, Nakamura K, Katsuki M, Yamamoto T, Inoue J (1999) Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice (in Eng). Genes Cells 4:353–362CrossRefGoogle Scholar
  29. 29.
    Gohda J, Matsumura T, Inoue J (2004) Cutting edge: TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta (TRIF)-dependent pathway in TLR signaling (in Eng). J Immunol 173:2913–2917CrossRefGoogle Scholar
  30. 30.
    Akiyama T, Maeda S, Yamane S, Ogino K, Kasai M, Kajiura F, Matsumoto M, Inoue J (2005) Dependence of self-tolerance on TRAF6-directed development of thymic stroma (in Eng). Science (New York, NY) 308:248–251.  https://doi.org/10.1126/science.1105677 CrossRefGoogle Scholar
  31. 31.
    Muto G, Kotani H, Kondo T, Morita R, Tsuruta S, Kobayashi T, Luche H, Fehling HJ, Walsh M, Choi Y, Yoshimura A (2013) TRAF6 is essential for maintenance of regulatory T cells that suppress Th2 type autoimmunity (in Eng). PLoS One 8:e74639.  https://doi.org/10.1371/journal.pone.0074639 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kobayashi T, Kim TS, Jacob A, Walsh MC, Kadono Y, Fuentes-Panana E, Yoshioka T, Yoshimura A, Yamamoto M, Kaisho T, Akira S, Monroe JG, Choi Y (2009) TRAF6 is required for generation of the B-1a B cell compartment as well as T cell-dependent and -independent humoral immune responses (in Eng). PLoS One 4:e4736.  https://doi.org/10.1371/journal.pone.0004736 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Takaba H, Morishita Y, Tomofuji Y, Danks L, Nitta T, Komatsu N, Kodama T, Takayanagi H (2015) Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance. Cell 163:975–987.  https://doi.org/10.1016/j.cell.2015.10.013 CrossRefPubMedGoogle Scholar
  34. 34.
    Yang S, Fujikado N, Kolodin D, Benoist C, Mathis D (2015) Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance (in Eng). Science (New York, NY) 348:589–594.  https://doi.org/10.1126/science.aaa7017 CrossRefGoogle Scholar
  35. 35.
    Yagi M, Miyamoto T, Toyama Y, Suda T (2006) Role of DC-STAMP in cellular fusion of osteoclasts and macrophage giant cells (in Eng). J Bone Miner Metab 24:355–358.  https://doi.org/10.1007/s00774-006-0697-9 CrossRefPubMedGoogle Scholar
  36. 36.
    Jeganathan S, Fiorino C, Naik U, Sun HS, Harrison RE (2014) Modulation of osteoclastogenesis with macrophage M1- and M2-inducing stimuli (in Eng). PLoS One 9:e104498.  https://doi.org/10.1371/journal.pone.0104498 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Xiong Q, Zhang L, Ge W, Tang P (2016) The roles of interferons in osteoclasts and osteoclastogenesis. Joint Bone Spine 83:276–281.  https://doi.org/10.1016/j.jbspin.2015.07.010 CrossRefPubMedGoogle Scholar
  38. 38.
    Jimi E, Akiyama S, Tsurukai T, Okahashi N, Kobayashi K, Udagawa N, Nishihara T, Takahashi N, Suda T (1999) Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function. J Immunol 163:434–442PubMedGoogle Scholar
  39. 39.
    Lomaga MA, Henderson JT, Elia AJ, Robertson J, Noyce RS, Yeh WC, Mak TW (2000) Tumor necrosis factor receptor-associated factor 6 (TRAF6) deficiency results in exencephaly and is required for apoptosis within the developing CNS (in Eng). J Neurosci 20:7384–7393CrossRefGoogle Scholar
  40. 40.
    Drachman DB (1994) Myasthenia gravis (in Eng). N Engl J Med 330:1797–1810.  https://doi.org/10.1056/nejm199406233302507 CrossRefPubMedGoogle Scholar
  41. 41.
    Brune B, Weigert A, Dehne N (2015) Macrophage polarization in the tumor microenvironment (in Eng). Redox Biol 5:419.  https://doi.org/10.1016/j.redox.2015.09.028 CrossRefPubMedGoogle Scholar
  42. 42.
    Martinez FO, Gordon S (2015) The evolution of our understanding of macrophages and translation of findings toward the clinic (in Eng). Expert Rev Clin Immunol 11:5–13.  https://doi.org/10.1586/1744666x.2015.985658 CrossRefPubMedGoogle Scholar
  43. 43.
    Teitelbaum SL (2016) Therapeutic implications of suppressing osteoclast formation versus function (in Eng). Rheumatology (Oxford, England) 55:61–63.  https://doi.org/10.1093/rheumatology/kew350 CrossRefGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer Japan KK, part of Springer Nature 2017

Authors and Affiliations

  • Akihito Oya
    • 1
  • Eri Katsuyama
    • 1
  • Mayu Morita
    • 2
  • Yuiko Sato
    • 1
    • 3
  • Tami Kobayashi
    • 1
    • 4
  • Kana Miyamoto
    • 1
  • Toru Nishiwaki
    • 1
  • Atsushi Funayama
    • 1
  • Yoshinari Fujita
    • 1
  • Takashi Kobayashi
    • 5
  • Morio Matsumoto
    • 1
  • Masaya Nakamura
    • 1
  • Arihiko Kanaji
    • 1
  • Takeshi Miyamoto
    • 1
    • 3
  1. 1.Department of Orthopedic SurgeryKeio University School of MedicineTokyoJapan
  2. 2.Division of Oral and Maxillofacial Surgery, Department of Dentistry and Oral SurgeryKeio University School of MedicineTokyoJapan
  3. 3.Department of Advanced Therapy for Musculoskeletal DisordersKeio University School of MedicineTokyoJapan
  4. 4.Department of Musculoskeletal Reconstruction and Regeneration SurgeryKeio University School of MedicineTokyoJapan
  5. 5.Department of Infectious Diseases Control, Faculty of MedicineOita UniversityYufuJapan

Personalised recommendations