Journal of Bone and Mineral Metabolism

, Volume 36, Issue 4, pp 410–419 | Cite as

THRAP3 interacts with and inhibits the transcriptional activity of SOX9 during chondrogenesis

  • Takashi Sono
  • Haruhiko AkiyamaEmail author
  • Shigenori Miura
  • Jian Min Deng
  • Chisa Shukunami
  • Yuji Hiraki
  • Yu Tsushima
  • Yoshiaki Azuma
  • Richard R. Behringer
  • Shuichi Matsuda
Original Article


Sex-determining region Y (Sry)-box (Sox)9 is required for chondrogenesis as a transcriptional activator of genes related to chondrocyte proliferation, differentiation, and cartilage-specific extracellular matrix. Although there have been studies investigating the Sox9-dependent transcriptional complexes, not all their components have been identified. In the present study, we demonstrated that thyroid hormone receptor-associated protein (THRAP)3 is a component of a SOX9 transcriptional complex by liquid chromatography mass spectrometric analysis of FLAG-tagged Sox9-binding proteins purified from FLAG-HA-tagged Sox9 knock-in mice. Thrap3 knockdown in ATDC5 chondrogenic cells increased the expression of Collagen type II alpha 1 chain (Col2a1) without affecting Sox9 expression. THRAP3 and SOX9 overexpression reduced Col2a1 levels to a greater degree than overexpression of SOX9 alone. The negative regulation of SOX9 transcriptional activity by THRAP3 was mediated by interaction between the proline-, glutamine-, and serine-rich domain of SOX9 and the innominate domain of THRAP3. These results indicate that THRAP3 negatively regulates SOX9 transcriptional activity as a cofactor of a SOX9 transcriptional complex during chondrogenesis.


THRAP3 SOX9 Chondrogenesis Knock-in mouse LC/MS/MS 


Compliance with ethical standards

Conflict of interest

The authors declare that they are no conflict of interest.


  1. 1.
    Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16:2813–2828CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Akiyama H, Lyons JP, Mori-Akiyama Y, Yang X, Zhang R, Zhang Z, Deng JM, Taketo MM, Nakamura T, Behringer RR, McCrea PD, de Crombrugghe B (2004) Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev 18:1072–1087CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, Stevanović M, Weissenbach J, Mansour S, Young ID, Goodfellow PN, Brook JD (1994) Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature (Lond) 372:525–530CrossRefGoogle Scholar
  4. 4.
    Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, Pasantes J, Bricarelli FD, Keutel J, Hustert E, Wolf U, Tommerup N, Schempp W, Scherer G (1994) Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 79:1111–1120CrossRefPubMedGoogle Scholar
  5. 5.
    Zhou R, Bonneaud N, Yuan CX, de Santa Barbara P, Boizet B, Schomber T, Scherer G, Roeder RG, Poulat F, Berta P (2002) SOX9 interacts with a component of the human thyroid hormone receptor-associated protein complex. Nucleic Acids Res 30:3245–3252CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Tsuda M, Takahashi S, Takahashi Y, Asahara H (2003) Transcriptional co-activators CREB-binding protein and p300 regulate chondrocyte-specific gene expression via association with Sox9. J Biol Chem 278:27224–27229CrossRefPubMedGoogle Scholar
  7. 7.
    Furumatsu T, Tsuda M, Taniguchi N, Tajima Y, Asahara H (2005) Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment. J Biol Chem 280:8343–8350CrossRefPubMedGoogle Scholar
  8. 8.
    Kawakami Y, Tsuda M, Takahashi S, Taniguchi N, Esteban CR, Zemmyo M, Furumatsu T, Lotz M, Izpisúa Belmonte JC, Asahara H (2005) Transcriptional coactivator PGC-1alpha regulates chondrogenesis via association with Sox9. Proc Natl Acad Sci USA 102:2414–2419CrossRefPubMedGoogle Scholar
  9. 9.
    Hattori T, Eberspaecher H, Lu J, Zhang R, Nishida T, Kahyo T, Yasuda H, de Crombrugghe B (2006) Interactions between PIAS proteins and SOX9 result in an increase in the cellular concentrations of SOX9. J Biol Chem 281:14417–14428CrossRefPubMedGoogle Scholar
  10. 10.
    Hattori T, Coustry F, Stephens S, Eberspaecher H, Takigawa M, Yasuda H, de Crombrugghe B (2008) Transcriptional regulation of chondrogenesis by coactivator Tip60 via chromatin association with Sox9 and Sox5. Nucleic Acids Res 36:3011–3024CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hata K, Nishimura R, Muramatsu S, Matsuda A, Matsubara T, Amano K, Ikeda F, Harley VR, Yoneda T (2008) Paraspeckle protein p54nrb links Sox9-mediated transcription with RNA processing during chondrogenesis in mice. J Clin Invest 118:3098–3108CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Takigawa Y, Hata K, Muramatsu S, Amano K, Ono K, Wakabayashi M, Matsuda A, Takada K, Nishimura R, Yoneda T (2010) The transcription factor Znf219 regulates chondrocyte differentiation by assembling a transcription factory with Sox9. J Cell Sci 123:3780–3788CrossRefPubMedGoogle Scholar
  13. 13.
    Amano K, Hata K, Muramatsu S, Wakabayashi M, Takigawa Y, Ono K, Nakanishi M, Takashima R, Kogo M, Matsuda A, Nishimura R, Yoneda T (2011) Arid5a cooperates with Sox9 to stimulate chondrocyte-specific transcription. Mol Biol Cell 22:1300–1311CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nakamura Y, Yamamoto K, He X, Otsuki B, Kim Y, Murao H, Soeda T, Tsumaki N, Deng JM, Zhang Z, Behringer RR, Crombrugghe BD, Postlethwait JH, Warman ML, Nakamura T, Akiyama H (2011) Wwp2 is essential for palatogenesis mediated by the interaction between Sox9 and mediator subunit 25. Nat Commun 2:251CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bell DM, Leung KK, Wheatley SC, Ng LJ, Zhou S, Ling KW, Sham MH, Koopman P, Tam PP, Cheah KS (1997) SOX9 directly regulates the type-II collagen gene. Nat Genet 16:174–178CrossRefPubMedGoogle Scholar
  16. 16.
    Lefebvre V, Li P, de Crombrugghe B (1998) A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J 17:5718–5733CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bridgewater LC, Lefebvre V, de Crombrugghe B (1998) Chondrocyte-specific enhancer elements in the Col11a2 gene resemble the Col2a1 tissue-specific enhancer. J Biol Chem 273:14998–15006CrossRefPubMedGoogle Scholar
  18. 18.
    Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B (1999) Sox9 is required for cartilage formation. Nat Genet 22:85–89CrossRefPubMedGoogle Scholar
  19. 19.
    Diefenbacher ME, Reich D, Dahley O, Kemler D, Litfin M, Herrlich P, Kassel O (2017) The LIM domain protein nTRIP6 recruits the mediator complex to AP-1-regulated promoters. PLoS One 9:e97549CrossRefGoogle Scholar
  20. 20.
    Lande-Diner L, Boyault C, Kim JY, Weitz CJ (2013) A positive feedback loop links circadian clock factor CLOCK-BMAL1 to the basic transcriptional machinery. Proc Natl Acad Sci USA 110:16021–16026CrossRefPubMedGoogle Scholar
  21. 21.
    Katano-Toki A, Satoh T, Tomaru T, Yoshino S, Ishizuka T, Ishii S, Ozawa A, Shibusawa N, Tsuchiya T, Saito T, Shimizu H, Hashimoto K, Okada S, Yamada M, Mori M (2013) THRAP3 interacts with HELZ2 and plays a novel role in adipocyte differentiation. Mol Endocrinol 27:769–780CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lee KM, Hsu Ia W, Tarn WY (2010) TRAP150 activates pre-mRNA splicing and promotes nuclear mRNA degradation. Nucleic Acids Res 38:3340–3350CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jungmichel S, Rosenthal F, Altmeyer M, Lukas J, Hottiger MO, Nielsen ML (2013) Proteome-wide identification of poly(ADP-ribosyl)ation targets in different genotoxic stress responses. Mol Cell 52:272–285CrossRefPubMedGoogle Scholar
  24. 24.
    McMahon AP, Bradley A (1990) The Wnt-1 proto-oncogene is required for development of a large region of the mouse brain. Cell 62:1073–1085CrossRefPubMedGoogle Scholar
  25. 25.
    Akiyama H, Hiraki Y, Shigeno C, Kohno H, Shukunami C, Tsuboyama T, Kasai R, Suzuki F, Konishi J, Nakamura T (1996) 1 alpha,25-dihydroxyvitamin D3 inhibits cell growth and chondrogenesis of a clonal mouse EC cell line, ATDC5. J Bone Miner Res 11:22–28CrossRefPubMedGoogle Scholar
  26. 26.
    Shukunami C, Shigeno C, Atsumi T, Ishizeki K, Suzuki F, Hiraki Y (1996) Chondrogenic differentiation of clonal mouse embryonic cell line ATDC5 in vitro: differentiation-dependent gene expression of parathyroid hormone (PTH)/PTH-related peptide receptor. J Cell Biol 133:457–468CrossRefPubMedGoogle Scholar
  27. 27.
    Taylor SM, Jones PA (1979) Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 17:771–779CrossRefPubMedGoogle Scholar
  28. 28.
    Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59–74CrossRefPubMedGoogle Scholar
  29. 29.
    Chevallet M, Luche S, Rabilloud T (2006) Silver staining of proteins in polyacrylamide gels. Nat Protoc 1:1852–1858CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Castellanos-Serra L, Hardy E (2006) Negative detection of biomolecules separated in polyacrylamide electrophoresis gels. Nat Protoc 1:1544–1551CrossRefPubMedGoogle Scholar
  31. 31.
    Sekido R, Lovell-Badge R (2008) Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature (Lond) 453:930–934CrossRefGoogle Scholar
  32. 32.
    Uhlenhaut NH, Jakob S, Anlag K, Eisenberger T, Sekido R, Kress J, Treier AC, Klugmann C, Klasen C, Holter NI, Riethmacher D, Schütz G, Cooney AJ, Lovell-Badge R, Treier M (2009) Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139:1130–1142CrossRefPubMedGoogle Scholar
  33. 33.
    Kim Y, Kobayashi A, Sekido R, DiNapoli L, Brennan J, Chaboissier MC, Poulat F, Behringer RR, Lovell-Badge R, Capel B (2006) Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol 4:e187CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Heyd F, Lynch KW (2010) Phosphorylation-dependent regulation of PSF by GSK3 controls CD45 alternative splicing. Mol Cell 40:126–137CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bracken CP, Wall SJ, Barre B, Panov KI, Ajuh PM, Perkins ND (2008) Regulation of cyclin D1 RNA stability by SNIP1. Cancer Res 68:7621–7628CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Horiuchi K, Kawamura T, Iwanari H, Ohashi R, Naito M, Kodama T, Hamakubo T (2013) Identification of Wilms’ tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J Biol Chem 288:33292–33302CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Cha JD, Kim HJ, Cha IH (2011) Genetic alterations in oral squamous cell carcinoma progression detected by combining array-based comparative genomic hybridization and multiplex ligation-dependent probe amplification. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 111:594–607CrossRefPubMedGoogle Scholar
  38. 38.
    Kasaian K, Wiseman SM, Thiessen N, Mungall KL, Corbett RD et al (2013) Complete genomic landscape of a recurring sporadic parathyroid carcinoma. J Pathol 230:249–260CrossRefPubMedGoogle Scholar
  39. 39.
    Ino Y, Arakawa N, Ishiguro H, Uemura H, Kubota Y, Hirano H, Toda T (2016) Phosphoproteome analysis demonstrates the potential role of THRAP3 phosphorylation in androgen-independent prostate cancer cell growth. Proteomics 16:1069–1078CrossRefPubMedGoogle Scholar
  40. 40.
    Horiuchi K, Umetani M, Minami T, Okayama H, Takada S, Yamamoto M, Aburatani H, Reid PC, Housman DE, Hamakubo T, Kodama T (2006) Wilms’ tumor 1-associating protein regulates G2/M transition through stabilization of cyclin A2 mRNA. Proc Natl Acad Sci USA 103:17278–17283CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer Japan KK 2017

Authors and Affiliations

  • Takashi Sono
    • 1
  • Haruhiko Akiyama
    • 2
    Email author
  • Shigenori Miura
    • 3
  • Jian Min Deng
    • 4
  • Chisa Shukunami
    • 3
    • 5
  • Yuji Hiraki
    • 3
  • Yu Tsushima
    • 6
  • Yoshiaki Azuma
    • 7
  • Richard R. Behringer
    • 4
  • Shuichi Matsuda
    • 1
  1. 1.Department of Orthopaedic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
  2. 2.Department of Orthopaedic SurgeryGifu UniversityGifuJapan
  3. 3.Laboratory of Cellular Differentiation, Institute for Frontier Life and Medical SciencesKyoto UniversityKyotoJapan
  4. 4.Department of GeneticsUniversity of Texas M.D. Anderson Cancer CenterHoustonUSA
  5. 5.Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
  6. 6.Pharmacology Research DepartmentTeijin Pharma LimitedHinoJapan
  7. 7.Medical Science DepartmentTeijin Pharma LimitedTokyoJapan

Personalised recommendations