Advertisement

Journal of Bone and Mineral Metabolism

, Volume 35, Issue 6, pp 598–607 | Cite as

Physical activity may be a potent regulator of bone turnover biomarkers in healthy girls during preadolescence

  • Antonis Kambas
  • Diamanda Leontsini
  • Alexandra Avloniti
  • Athanasios Chatzinikolaou
  • Theodoros Stampoulis
  • Konstantinos Makris
  • Dimitrios Draganidis
  • Athanasios Z. Jamurtas
  • Symeon Tournis
  • Ioannis G. FatourosEmail author
Original Article

Abstract

This study investigated the effects of different levels of habitual physical activity (PA) assessed by pedometry on bone turnover markers of preadolescent girls according to a cross-sectional experimental design. Sixty prepubertal girls of similar chronological age, bone age, maturity level, and nutritional status were assigned to a low PA (LPA; n = 25), a moderate PA (MPA; n = 17), or a high PA (HPA; n = 18) group. Dual-energy X-ray absorptiometry was used to measure areal bone mineral density (BMD) and bone mineral content (BMC) of the lumbar spine (L2–L4) and dominant hip (femoral neck and trochanter). Blood was collected for the measurement of alkaline phosphatase (ALP), bone-specific ALP (BSAP), procollagen type I N-terminal propeptide (PINP), C-terminal telopeptide of collagen I (CTX), parathyroid hormone (PTH), osteocalcin, thyroid-stimulating hormone, estradiol, testosterone, luteinizing hormone, and follicle-stimulating hormone concentrations. ANOVA revealed that the HPA group (18,695 ± 1244 steps per day) had a lower daily energy intake and body mass than the MPA group (10,774 ± 521 steps per day) and the LPA group (7633 ± 1099 steps per day). The HPA group had higher (P < 0.05) lumbar and hip BMD and hip BMC than the LPA group and higher (P < 0.05) lumbar BMD than the MPA group. The MPA group had higher (P < 0.05) hip BMC than the LPA group. The HPA group had greater (P < 0.05) values of BSAP, PINP, and ALP and lower (P < 0.05) values of PTH and CTX than the LPA group but not the MPA group. A partial correlation analysis (adjusted for body mass index) revealed a positive correlation of steps per day with BMD and BSAP concentration and a negative correlation with PTH and CTX concentration. In conclusion, PA increases BMD and BMC of premenarcheal girls by favoring bone formation over bone resorption.

Keywords

Children Preadolescence Physical activity Bone markers Bone remodeling 

Notes

Acknowledgements

This study was supported by departmental funding and a grant from Bodosakis Foundation (Greece) for the purchase of instruments. The authors thank Ioannis Galanis for his technical assistance with diet analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kelly PJ, Morrison NA, Sambrook PN, Nguyen TV, Eisman JA (1995) Genetic influences on bone turnover, bone density and fracture. Eur J Endocrinol 133:265–271CrossRefPubMedGoogle Scholar
  2. 2.
    Lloyd T, Rollings N, Andon MB, Demers LM, Eggli DF, Kieselhorst K, Kulin H, Landis JR, Martel JK, Orr G (1992) Determinants of bone density in young women. I. Relationships among pubertal development, total body bone mass, and total body bone density in premenarchal females. J Clin Endocrinol Metab 75:383–387PubMedGoogle Scholar
  3. 3.
    Burrow M (2007) Exercise and bone mineral accrual in children and adolescents. J Sports Sci Med 6:305–312Google Scholar
  4. 4.
    Chevalley T, Bonjour JP, van Rietbergen B, Ferrari S, Rizzoli R (2011) Fractures during childhood and adolescence in healthy boys: relation with bone mass, microstructure, and strength. J Clin Endocrinol Metab 96:3134–3142CrossRefPubMedGoogle Scholar
  5. 5.
    Davies JH, Evans BA, Gregory JW (2005) Bone mass acquisition in healthy children. Arch Dis Children 90:273–378CrossRefGoogle Scholar
  6. 6.
    Tveit M, Rosengren BE, Nilsson JA, Ahlborg HG, Karlsson MK (2013) Bone mass following physical activity in young years: a mean 39-year prospective controlled study in men. Osteoporos Int 24:1389–1397CrossRefPubMedGoogle Scholar
  7. 7.
    Burt LA, Naughton GA, Greene DA, Ducher G (2011) Skeletal differences at the ulna and radius between pre-pubertal non-elite female gymnasts and non-gymnasts. J Musculoskelet Neuronal Interact 11:227–233PubMedGoogle Scholar
  8. 8.
    Tournis S, Michopoulou E, Fatouros IG, Paspati I, Michalopoulou M, Raptou P, Leontsini D, Avloniti A, Krekoukia M, Zouvelou V, Galanos A, Aggelousis N, Kambas A, Douroudos I, Lyritis GP, Taxildaris K, Pappaioannou N (2010) Effect of rhythmic gymnastics on volumetric bone mineral density and bone geometry in premenarcheal female athletes and controls. J Clin Endocrinol Metab 95:2755–2762CrossRefPubMedGoogle Scholar
  9. 9.
    Michalopoulou M, Kambas A, Leontsini D, Chatzinikolaou A, Draganidis D, Avloniti A, Tsoukas D, Michopoulou E, Lyritis GP, Papaioannou N, Tournis S, Fatouros IG (2013) Physical activity affects bone geometry of premenarcheal girls in a dose-dependent manner. Metabolism 62:1811–1818CrossRefPubMedGoogle Scholar
  10. 10.
    Fujita Y, Iki M, Ikeda Y, Morita A, Matsukura T, Nishino H, Yamagami T, Kagamimori S, Kagawa Y, Yoneshima H (2011) Tracking of appendicular bone mineral density for 6 years including the pubertal growth spurt: Japanese Population-based Osteoporosis kids cohort study. J Bone Miner Metab 29:208–216CrossRefPubMedGoogle Scholar
  11. 11.
    Iwamoto J, Shimamura C, Takeda T, Abe H, Ichimura S, Sato Y, Toyama Y (2004) Effects of treadmill exercise on bone mass, bone metabolism, and calcitropic hormones in young growing rats. J Bone Miner Metab 22:26–31CrossRefPubMedGoogle Scholar
  12. 12.
    Bourrin S, Ghaemmaghami FL, Vico L, Chappard D, Gharib C, Alexandre C (1992) Effect of a five week swimming program on rat bone: a histomorphometric study. Calcif Tissue Int 51:137–152CrossRefPubMedGoogle Scholar
  13. 13.
    Järvinen TL, Kannus P, Pajamäki I, Vuohelainen T, Tuukkanen J, Järvinen M, Sievänen H (2003) Estrogen deposits extra mineral into bones of female rats in puberty, but simultaneously seems to suppress the responsiveness of female skeleton to mechanical loading. Bone 32:642–651CrossRefPubMedGoogle Scholar
  14. 14.
    Dalskov S, Muller M, Ritz C, Damsgaard CT, Papadaki A, Saris WH, Astrup A, Michaelsen KF, Mølgaard C (2014) Effects of dietary protein and glycaemic index on biomarkers of bone turnover in children. Br J Nutrition 111:1253–1262CrossRefGoogle Scholar
  15. 15.
    Rogers RS, Dawson AW, Wang Z, Thyfault JP, Hinton PS (2011) Acute response of plasma markers of bone turnover to a single bout of resistance training or plyometrics. J Appl Physiol 111:1353–1360CrossRefPubMedGoogle Scholar
  16. 16.
    De la Piedra C, Calero JA, Traba ML, Asensio MD, Argente J, Munoz MT (1999) Urinary a and b C-telopeptides of collagen I: clinical implications in bone remodeling in patients with anorexia nervosa. Osteoporos Int 10:480–486CrossRefPubMedGoogle Scholar
  17. 17.
    Bemben DA, Sharma-Ghimire P, Chen Z, Kim E, Kim D, Bemben MG (2015) Effects of whole-body vibration on acute bone turnover marker responses to resistance exercise in young men. J Musculoskelet Neuronal Interact 15:23–31PubMedPubMedCentralGoogle Scholar
  18. 18.
    The International Society for Clinical Densitometry (ISCD). Pediatric Official Positions of the International Society for Clinical Densitometry 2007. http://www.iscd.org/official-positions/official-positions/
  19. 19.
    Colley RC, Janssen I, Tremblay MS (2012) Daily step target to measure adherence to physical activity guidelines in children. Med Sci Sports Exerc 44:977–982CrossRefPubMedGoogle Scholar
  20. 20.
    Tanner JM (1978) Foetus into man. Harvard Press, CambridgeGoogle Scholar
  21. 21.
    Giannakidou DM, Kambas A, Ageloussis N, Fatouros I, Christoforidis C, Venetsanou F, Douroudos I, Taxildaris K (2011) The validity of two Omron pedometers during treadmill walking is speed-dependent. Eur J Appl Physiol 112:49–57CrossRefPubMedGoogle Scholar
  22. 22.
    De Smet S, Michels N, Polfliet C, D’Haese S, Roggen I, Henauw De, Sioen I (2015) The influence of dairy consumption and physical activity on ultrasound bone measurements in Flemish children. J Bone Miner Metab 33:192–200CrossRefPubMedGoogle Scholar
  23. 23.
    Behringer M, Gruetzner S, McCourt M, Mester J (2014) Effects of weight-bearing activities on bone mineral content and density in children and adolescents: a meta-analysis. J Bone Miner Res 29:467–478CrossRefPubMedGoogle Scholar
  24. 24.
    Sundberg M, Gärdsell P, Johnell O, Karlsson MK, Ornstein E, Sandstedt B, Sernbo I (2002) Physical activity increases bone size in prepubertal boys and bone mass in prepubertal girls: a combined cross-sectional and 3-year longitudinal study. Calcif Tissue Int 71:406–415CrossRefPubMedGoogle Scholar
  25. 25.
    Bass S, Pearce G, Bradney M, Hendrich E, Delmas PD, Harding A, Seeman E (1998) Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res 13:500–507CrossRefPubMedGoogle Scholar
  26. 26.
    Manolagas SC, Kousteni S, Jilka RL (2002) Sex steroids and bone. Recent Prog Horm Res 57:385–409CrossRefPubMedGoogle Scholar
  27. 27.
    Maïmoun L, Coste O, Mariano-Goulart D, Galtier F, Mura T, Philibert P, Briot K, Paris F, Sultan C (2011) In peripubertal girls, artistic gymnastics improves areal bone mineral density and femoral bone geometry without affecting serum OPG/RANKL levels. Osteoporos Int 22:3055–3066CrossRefPubMedGoogle Scholar
  28. 28.
    Leonard MB, Shults J, Wilson BA, Tershakovec AM, Zemel BS (2004) Obesity during childhood and adolescence augments bone mass and bone dimensions. Am J Clin Nutr 80:514–523PubMedGoogle Scholar
  29. 29.
    Maimoun L, Sultan C (2010) Effects of physical activity on bone remodeling. Metabolism 60:373–388CrossRefPubMedGoogle Scholar
  30. 30.
    Qi MC, Zou SJ, Han LC, Zhou HX, Hu J (2009) Expression of bone-related genes in bone marrow MSCs after cyclic mechanical strain: implications for distraction osteogenesis. Int J Oral Sci 1:143–150CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mora S, Prinster C, Proverbio MC, Bellini A, de Poli SC, Weber G, Abbiati G, Chiumello G (1998) Urinary markers of bone turnover in healthy children and adolescents: age related changes and effect of puberty. Calcif Tissue Int 63:369–374CrossRefPubMedGoogle Scholar
  32. 32.
    Daly RM, Rich PA, Klein R, Bass S (1999) Effects of high-impact exercise on ultrasonic and biochemical indices of skeletal status: a prospective study in young male gymnasts. J Bone Miner Res 14:1222–1230CrossRefPubMedGoogle Scholar
  33. 33.
    Lehtonen-Veromaa M, Mottonen T, Irjala K, Nuotio I, Leino A, Viikari J (2000) A 1 year prospective study on the relationship between physical activity, markers of bone metabolism, and bone acquisition in peripubertal girls. J Clin Endocrinol Metab 85:3726–3732PubMedGoogle Scholar
  34. 34.
    Jaffre C, Courteix D, Dine G, Lac G, Delamarche P, Benhamon L (2001) High-impact loading training induces bone hyperresorption activity in young elite female gymnasts. J Pediatr Endocrinol Metab 14:75–83CrossRefPubMedGoogle Scholar
  35. 35.
    Munoz MT, de la Piedra C, Barrios V, Garrido G, Argente J (2004) Changes in bone density and bone markers in rhythmic gymnasts and ballet dancers: implications for puberty and leptin levels. Eur J Endocrinol 151:491–496CrossRefPubMedGoogle Scholar
  36. 36.
    Kish K, Mezil Y, Ward WE, Klentrou P, Falk B (2015) Effects of plyometric exercise session on markers of bone turnover in boys and young men. Eur J Appl Physiol 115:2115–2124CrossRefPubMedGoogle Scholar
  37. 37.
    Borderie D, Chernau B, Dougados M, Ekindjian OG, Roux G (1998) Biochemical markers as predictors of bone mineral density changes after GnRH agonist treatment. Calcif Tissue Int 62:21–25CrossRefPubMedGoogle Scholar
  38. 38.
    Georgopoulos N, Markou K, Theodoropoulou A, Paraskevopoulou P, Varaki L, Kazantzi Z, Leglise M, Vagenakis AG (1999) Growth and pubertal development in elite female rhythmic gymnasts. J Clin Endocrinol Metab 84:4525–4530CrossRefPubMedGoogle Scholar
  39. 39.
    Herrmann D, Intemann T, Lauria F, Mårild S, Molnár D, Moreno LA, Sioen I, Tornaritis M, Veidebaum T, Pigeot I, Ahrens W (2014) Reference values of bone stiffness index and C-terminal telopeptide in healthy European children. Int J Obes 38:S76–S85CrossRefGoogle Scholar
  40. 40.
    Nowak A, Lochynski D, Pawlak M, Romanowski W, Krutki P (2014) High-magnitude whole-body vibration effects on bone resorption in adult rats. Aviat Space Environ Med 85:518–521CrossRefPubMedGoogle Scholar
  41. 41.
    O’Brien CA, Nakashima T, Takayanagi H (2013) Osteocyte control of osteoclastogenesis. Bone 54:258–263CrossRefPubMedGoogle Scholar
  42. 42.
    Radetti G, Franceschi R, Adami S, Longhi S, Rossini M, Gatti D (2014) Higher circulating parathormone is associated with smaller and weaker bones in obese children. Calcif Tissue Int 95:1–7CrossRefPubMedGoogle Scholar
  43. 43.
    Glover SJ, Eastell R, McCloskey EV, Rogers A, Garnero P, Lowery J, Belleli R, Wright TM, John MR (2009) Rapid and robust response of biochemical markers of bone formation to teriparatide therapy. Bone 45:1053–1058CrossRefPubMedGoogle Scholar
  44. 44.
    Grethen E, Hill KM, Jones R, Cacucci BM, Gupta CE, Acton A, Considine RV, Peacock M (2012) Serum leptin, parathyroid hormone, 1,25-dihydroxyvitamin D, fibroblast growth factor 23, bone alkaline phosphatase, and sclerostin relationships in obesity. J Clin Endocrinol Metab 97:1655–1662CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Vaidy A, Curhan GC, Paik JM, Wang M, Taylor EN (2016) Physical activity and the risk of primary hyperparathyroidism. J Clin Endocrinol Metab 101:1590–1597CrossRefGoogle Scholar
  46. 46.
    Vainionpää A, Korpelainen R, Väänänen HK, Haapalahti J, Jämsä T, Leppäluoto J (2009) Effect of impact exercise on bone metabolism. Osteoporos Int 20:1725–1733CrossRefPubMedGoogle Scholar
  47. 47.
    Berger C, Greene-Finestone LS, Langsetmo L, Kreiger N, Joseph L, Kovacs CS, Richards JB, Hidiroglou N, Sarafin K, Davison KS, Adachi JD, Brown J, Hanley DA, Prior JC, Goltzman D, CaMos Research Group (2012) Temporal trends and determinants of longitudinal change in 25-hydroxyvitamin D and parathyroid hormone levels. J Bone Miner Res 27:1381–1389CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Falk B, Haddad F, Klentrou P, Ward W, Kish K, Mezil Y, Radom-Aizik S (2016) Differential sclerostin and parathyroid hormone response to exercise in boys and men. Osteoporos Int 27:1245–1249CrossRefPubMedGoogle Scholar
  49. 49.
    Jurimae J, Purge P, Jurimae T, von Duvillard SP (2006) Bone metabolism in elite male rowers: adaptation to volume-extended training. Eur J Appl Physiol 97:127–132CrossRefPubMedGoogle Scholar
  50. 50.
    Nichols DL, Sanborn CF, Bonnick SL, Ben-Ezra V, Gench B, DiMarco NM (1994) The effects of gymnastics training on bone mineral density. Med Sci Sports Exerc 26:1220–1225CrossRefPubMedGoogle Scholar
  51. 51.
    Karlsson KM, Karlsson C, Ahlborg HG, Valdimarsson O, Ljunghall S (2003) The duration of exercise as a regulator of bone turnover. Calcif Tissue Int 73:350–355CrossRefPubMedGoogle Scholar
  52. 52.
    Nickols-Richardson SM, O’Connor PJ, Shapses SA, Lewis RD (1999) Longitudinal bone mineral density changes in female child artistic gymnasts. J Bone Miner Res 14:994–1002CrossRefPubMedGoogle Scholar
  53. 53.
    Colvard DS, Eriksson EF, Keeting PE, Wilson EM, Lubahn DB, French FS, Riggs BL, Spelsberg TC (1989) Identification of androgen receptors in normal human osteoblast-like cells. Proc Natl Acad Sci USA 86:854–857CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Maïmoun L, Coste O, Philibert P, Briot K, Mura T, Galtier F, Castes-de-Paulet B, Mariano-Goulart D, Sultan C, Paris F (2013) Testosterone secretion in elite adolescent swimmers does not modify bone mass acquisition: a 1-year follow-up study. Fertil Steril 99:270–278CrossRefPubMedGoogle Scholar
  55. 55.
    Guglielmini C, Cavallini R, Mazzoni G, Ferrazzini S, Manfredini F, Valpondi V, Bagni B (1995) Relationship between physical activity level and bone mineral density in two groups of female athletes. Q J Nucl Med 39:280–284PubMedGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer Japan 2016

Authors and Affiliations

  • Antonis Kambas
    • 1
  • Diamanda Leontsini
    • 1
  • Alexandra Avloniti
    • 1
  • Athanasios Chatzinikolaou
    • 1
  • Theodoros Stampoulis
    • 1
  • Konstantinos Makris
    • 2
  • Dimitrios Draganidis
    • 3
  • Athanasios Z. Jamurtas
    • 3
    • 4
  • Symeon Tournis
    • 5
  • Ioannis G. Fatouros
    • 3
    Email author
  1. 1.Department of Physical Education and Sport ScienceDemocritus University of ThraceKomotiniGreece
  2. 2.Clinical Biochemistry DepartmentKAT HospitalAthensGreece
  3. 3.School of Physical Education and Sports SciencesUniversity of ThessalyTrikalaGreece
  4. 4.Institute of Human Performance and RehabilitationCenter for Research and Technology, ThessalyTrikalaGreece
  5. 5.Laboratory of Research of Musculoskeletal System “Th. Garofalidis”University of Athens, KAT HospitalAthensGreece

Personalised recommendations