Journal of Bone and Mineral Metabolism

, Volume 35, Issue 5, pp 497–503 | Cite as

Lithium chloride enhances bone regeneration and implant osseointegration in osteoporotic conditions

Original Article

Abstract

Osteoporotic patients have a high risk of dental and orthopedic implant failure. Lithium chloride (LiCl) has been reported to enhance bone formation. However, the role of LiCl in the success rate of dental and orthopedic implants in osteoporotic conditions is still unknown. We investigated whether LiCl enhances implant osseointegration, implant fixation, and bone formation in osteoporotic conditions. Sprague–Dawley female rats (n = 18) were ovariectomized (OVX) to induce osteoporosis, and another nine rats underwent sham surgery. Three months after surgery, titanium implants were implanted in the tibia of the OVX and sham group rats. After implantation, the OVX rats were gavaged with 150 mg/kg/2 days of LiCl (OVX + LiCl group) or saline (OVX group), and sham group rats were gavaged with saline for 3 months. Implant osseointegration and bone formation were analyzed using histology, biomechanical testing, and micro computed tomography (micro-CT). More bone loss was observed in the OVX group compared to the control, and LiCl treatment enhanced bone formation and implant fixation in osteoporotic rats. In the OVX group, bone−implant contact (BIC) was decreased by 81.2 % compared to the sham group. Interestingly, the OVX + LiCl group showed 4.4-fold higher BIC compared to the OVX group. Micro-CT data of tibia from the OVX + LiCl group showed higher bone volume, trabecular thickness, trabecular number, and osseointegration compared to the OVX group. Maximum push-out force and implant−bone interface shear strength were 2.9-fold stronger in the OVX + LiCl group compared to the OVX group. In conclusion, LiCl enhanced implant osseointegration, implant fixation, and bone formation in osteoporotic conditions, suggesting LiCl as a promising therapeutic agent to prevent implant failure and bone loss in osteoporotic conditions.

Keywords

Osteoporosis Lithium chloride Osseointegration Implant fixation Bone formation 

Notes

Acknowledgments

The authors would like to acknowledge the support provided by the Nature Science Foundation of Zhejiang Province (No. LY1 3H140005), and Grants from the Health and Family Planning Commission of Zhejiang Province, China (No. 2013KYA124), the Scientific Research Fund of Zhejiang Provincial Education Department (No. Y201326860) and the Wenzhou Science and Technology Bureau (Nos. Y20110108 and 20130033).

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

References

  1. 1.
    Adell R, Eriksson B, Lekholm U, Branemark PI, Jemt T (1990) A long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants 5:347–358PubMedGoogle Scholar
  2. 2.
    Bozic KJ, Kurtz SM, Lau E, Ong K, Vail TP, Berry DJ (2009) The epidemiology of revision total hip arthroplasty in the US. J Bone Joint Surg Am 91:128–133CrossRefPubMedGoogle Scholar
  3. 3.
    Butz F, Aita H, Wang CJ, Ogawa T (2006) Harder and stiffer bone osseointegrated to roughened titanium. J Dent Res 85:560–565CrossRefPubMedGoogle Scholar
  4. 4.
    Renouard F, Rangert B (2008) General risk factors, risk factors in implant dentistry: simplified clinical analysis for predictable treatment (second edition). Quintessence International, Paris, pp 1–18Google Scholar
  5. 5.
    Javed F, Ahmed HB, Crespi R, Romanos GE (2013) Role of primary stability for successful osseointegration of dental implants: factors of influence and evaluation. Interv Med Appl Sci 5:162–167PubMedPubMedCentralGoogle Scholar
  6. 6.
    Okamura A, Ayukawa Y, Iyama S, Koyano K (2004) Effect of the difference of bone turnover on peri-titanium implant osteogenesis in ovariectomized rats. J Biomed Mater Res A 70:497–505CrossRefPubMedGoogle Scholar
  7. 7.
    Deng F, Zhang H, Zhang H, Shao H, He Q, Zhang P (2010) A comparison of clinical outcomes for implants placed in fresh extraction sockets versus healed sites in periodontally compromised patients: a 1-year follow-up report. Int J Oral Maxillofac Implants 25:1036–1040PubMedGoogle Scholar
  8. 8.
    Chen H, Liu N, Xu X, Qu X, Lu E (2013) Smoking, radiotherapy, diabetes and osteoporosis as risk factors for dental implant failure: a meta-analysis. PLoS One 8:e71955CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Virdi AS, Irish J, Sena K, Liu M, Ke HZ, McNulty MA, Sumner DR (2015) Sclerostin antibody treatment improves implant fixation in a model of severe osteoporosis. J Bone Joint Surg Am 97:133–140CrossRefPubMedGoogle Scholar
  10. 10.
    van Steenberghe D, Jacobs R, Desnyder M, Maffei G, Quirynen M (2002) The relative impact of local and endogenous patient-related factors on implant failure up to the abutment stage. Clin Oral Implants Res 13:617–622CrossRefPubMedGoogle Scholar
  11. 11.
    Bass S, Triplett R (1991) A report of 303 cases. Clin Oral Implants Res 2:193–198CrossRefPubMedGoogle Scholar
  12. 12.
    Jaffin R, Berman C (1991) The excessive loss of Brånemark fixtures in type IV bone: a 5-year analysis. J Periodontol 62:2–4CrossRefPubMedGoogle Scholar
  13. 13.
    Duarte PM, César Neto JB, Gonçalves PF, Sallum EA, Nocitij F (2003) Estrogen deficiency affects bone healing around titanium implants: a histometric study in rats. Implant Dent 12:340–346CrossRefPubMedGoogle Scholar
  14. 14.
    Lippuner K (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94:646–660CrossRefGoogle Scholar
  15. 15.
    Giannoudis P, Tzioupis C, Almalki T, Buckley R (2007) Fracture healing in osteoporotic fractures: is it really different? A basic science perspective. Injury 38:S90–S99CrossRefPubMedGoogle Scholar
  16. 16.
    Hunziker EB, Enggist L, Küffer A, Buser D, Liu Y (2012) Osseointegration: the slow delivery of BMP-2 enhances osteoinductivity. Bone 51:98–106CrossRefPubMedGoogle Scholar
  17. 17.
    Ma Y, Zhang Z, Liu Y, Li H, Wang N, Liu W, Li W, Jin L, Wang J, Chen S (2015) Nanotubes functionalized with BMP2 knuckle peptide improve the osseointegration of titanium implants in rabbits. J Biomed Nanotechnol 11:236–244CrossRefPubMedGoogle Scholar
  18. 18.
    Vohra F, Al-Rifaiy MQ, Almas K, Javed F (2014) Efficacy of systemic bisphosphonate delivery on osseointegration of implants under osteoporotic conditions: lessons from animal studies. Arch Oral Biol 59:912–920CrossRefPubMedGoogle Scholar
  19. 19.
    Li Y, Li X, Song G, Chen K, Yin G, Hu J (2012) Effects of strontium ranelate on osseointegration of titanium implant in osteoporotic rats. Clin Oral Implants Res 23:1038–1044CrossRefPubMedGoogle Scholar
  20. 20.
    Bi Y, Gao Y, Ehirchiou D, Cao C, Kikuiri T, Le A, Shi S, Zhang L (2010) Bisphosphonates cause osteonecrosis of the jaw like disease in mice. Am J Pathol 177:280–290CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Malhi GS, Tanious M, Das P, Berk M (2012) The science and practice of lithium therapy. Aust N Z J Psychiatry 46:192–211CrossRefPubMedGoogle Scholar
  22. 22.
    O’Brien WT, Harper AD, Jové F, Woodgett JR, Maretto S, Piccolo S, Klein PS (2004) Glycogen synthase kinase-3beta haplo insufficiency mimics the behavioral and molecular effects of lithium. J Neurosci 24:6791–6798CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Schou M (2001) Lithium treatment at 52. J Affect Disord 67:21–32CrossRefPubMedGoogle Scholar
  24. 24.
    Galli C, Piemontese M, Lumetti S, Manfredi E, Macaluso GM, Passeri G (2013) GSK3b-inhibitor lithium chloride enhances activation of Wnt canonical signaling and osteoblast differentiation on hydrophilic titanium surfaces. Clin Oral Implants Res 24:921–927CrossRefPubMedGoogle Scholar
  25. 25.
    Clément-Lacroix P, Ai M, Morvan F, Roman-Roman S, Vayssière B, Belleville C, Estrera K, Warman ML, Baron R, Rawadi G (2005) Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci USA 102:17406–17411CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Tang L, Chen Y, Pei F, Zhang H (2015) Lithium chloride modulates adipogenesis and osteogenesis of human bone marrow-derived mesenchymal stem cells. Cell Physiol Biochem 37:143–152CrossRefPubMedGoogle Scholar
  27. 27.
    Arioka M, Takahashi-Yanaga F, Sasaki M, Yoshihara T, Morimoto S, Hirata M, Mori Y, Sasaguri T (2014) Acceleration of bone regeneration by local application of lithium: Wnt signal-mediated osteoblastogenesis and Wnt signal-independent suppression of osteoclastogenesis. Biochem Pharmacol 90:397–405CrossRefPubMedGoogle Scholar
  28. 28.
    Wang X, Zhu S, Jiang X, Li Y, Song D, Hu J (2015) Systemic administration of lithium improves distracted bone regeneration in rats. Calcif Tissue Int 96:534–540CrossRefPubMedGoogle Scholar
  29. 29.
    Wang Y, Gao S, Jiang H, Lin P, Bao X, Zhang Z, Hu M (2014) Lithium chloride attenuates root resorption during orthodontic tooth movement in rats. Exp Ther Med 7:468–472CrossRefPubMedGoogle Scholar
  30. 30.
    Vestergaard P, Rejnmark L, Mosekilde L (2005) Reduced relative risk of fractures among users of lithium. Calcif Tissue Int 77:1–8CrossRefPubMedGoogle Scholar
  31. 31.
    Zamani A, Omrani GR, Nasab MM (2009) Lithium’s effect on bone mineral density. Bone 44:331–334CrossRefPubMedGoogle Scholar
  32. 32.
    Wilting I, de Vries F, Thio BM, Cooper C, Heerdink ER, Leufkens HG, Nolen WA, Egberts AC, van Staa TP (2007) Lithium use and the risk of fractures. Bone 40:1252–1258CrossRefPubMedGoogle Scholar
  33. 33.
    Chen BL, Li YQ, Xie DH, Yang X (2012) Low-magnitude high-frequency loading via whole body vibration enhances bone–implant osseointegration in ovariectomized rats. J Orthop Res 30:733–739CrossRefPubMedGoogle Scholar
  34. 34.
    Gao Y, Luo E, Hu J, Xue J, Zhu S, Li J (2009) Effect of combined local treatment with zoledronic acid and basic fibroblast growth factor on implant fixation in ovariectomized rats. Bone 44:225–232CrossRefPubMedGoogle Scholar
  35. 35.
    Chen B, Li Y, Yang X, Xu H, Xie D (2013) Zoledronic acid enhances bone-implant osseointegration more than alendronate and strontium ranelate in ovariectomized rats. Osteoporos Int 24:2115–2121CrossRefPubMedGoogle Scholar
  36. 36.
    Minashima T, Zhang Y, Lee Y, Kirsch T (2014) Lithium protects against cartilage degradation in osteoarthritis. Arthritis Rheumatol 66:1228–1236CrossRefPubMedGoogle Scholar
  37. 37.
    Bernick J, Wang Y, Sigal IA, Alman BA, Whyne CM, Nam D (2014) Parameters for lithium treatment are critical in its enhancement of fracture-healing in rodents. J Bone Joint Surg Am 96:1990–1998CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Li L, Wang R, Li B, Liang W, Pan H, Cui X, Tang J, Li B (2016) Lithium doped calcium phosphate cement maintains physical mechanical properties and promotes osteoblast proliferation and differentiation. J Biomed Mater Res B Appl Biomater. doi: 10.1002/jbm.b.33625 Google Scholar
  39. 39.
    Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sambrook P, Cooper C (2006) Osteoporosis. Lancet 367:2010–2018CrossRefPubMedGoogle Scholar
  41. 41.
    Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, Mackie EJ, Seeman E (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375:1729–1736CrossRefPubMedGoogle Scholar
  42. 42.
    Lehmann SW, Lee J (2013) Lithium-associated hypercalcemia and hyperparathyroidism in the elderly: what do we know? J Affect Disord 146:151–157CrossRefPubMedGoogle Scholar
  43. 43.
    Le Roy V, Delmas Y, Verdoux H (2009) Chronic renal complications induced by lithium. Encephale 35:605–610CrossRefPubMedGoogle Scholar
  44. 44.
    Bilanakis N, Gibiriti M (2004) Lithium intoxication, hypercalcemia and “accidentally” induced food and water aversion: a case report. Prog Neuropsychopharmacol Biol Psychiatry 28:201–203CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer Japan 2016

Authors and Affiliations

  1. 1.School and Hospital of StomatologyWenzhou Medical UniversityWenzhouChina
  2. 2.The First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
  3. 3.Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Science and Technology (SPST)Tianjin UniversityTianjinChina

Personalised recommendations