Journal of Bone and Mineral Metabolism

, Volume 34, Issue 6, pp 668–677 | Cite as

Z-score discordance and contributing factors in healthy premenopausal women with low bone mineral density: the Korean National Health and Nutrition Examination Survey 2008–9

  • Kyeong Hye Park
  • Jung Soo Lim
  • Kyoung Min Kim
  • Yumie Rhee
  • Sung-Kil LimEmail author
Original Article


The premenopausal period is important for bone health and prevention of future fractures, but measuring bone mineral density (BMD) at only one site may not be sufficient to determine therapeutic strategies for low BMD in premenopausal women due to the presence of Z-score discordance. In this study, we investigated Z-score discordance in addition to contributing factors of idiopathic low BMD in healthy premenopausal Korean women. We studied 3003 premenopausal women aged 18–50 years, without secondary causes for low BMD and history of fragility fracture, who had participated in the Fourth Korean National Health and Nutrition Examination Surveys (2008–2009). Low body mass index (BMI), low vitamin D level, and low body muscle mass were associated with low BMD even in premenopausal women. Risk factors differed depending on the anatomic site. Low BMI and low vitamin D level were risk factors for low femoral neck BMD (FN-BMD), but not for low lumbar spine BMD (LS-BMD). Only total muscle mass had a slight effect on low LS-BMD. Z-score discordance was much higher than expected, in 75 and 73.8 % of the low LS-BMD and low FN-BMD groups, respectively. Our findings suggest the need to consider BMD discordance in premenopausal women and also to provide information on correctable factors affecting low BMD in younger populations. Long-term follow-up is needed to evaluate the possible effect of Z-score discordance on the prognosis of osteoporosis and subsequent fracture risk.


Premenopausal women Low bone mineral density Z-score Discordance 



This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (No. 20110001024).

Compliance with ethical standards

Conflict of interest

All authors have no conflict of interest.

Supplementary material

774_2015_715_MOESM1_ESM.pdf (152 kb)
Supplementary material 1 (PDF 152 kb)


  1. 1.
    Donovan MA, Dempster D, Zhou H, McMahon DJ, Fleischer J, Shane E (2005) Low bone formation in premenopausal women with idiopathic osteoporosis. J Clin Endocrinol Metab 90:3331–3336CrossRefPubMedGoogle Scholar
  2. 2.
    Mounach A, Mouinga Abayi D, Ghazi M, Ghozlani I, Nouijai A, Achemlal L, Bezza A, El Maghraoui A (2009) Discordance between hip and spine bone mineral density measurement using DXA: prevalence and risk factors. Semin Arthritis Rheum 38:467–471 (Elsevier) CrossRefPubMedGoogle Scholar
  3. 3.
    Cohen A, Recker R, Lappe J, Dempster D, Cremers S, McMahon D, Stein E, Fleischer J, Rosen C, Rogers H (2012) Premenopausal women with idiopathic low-trauma fractures and/or low bone mineral density. Osteoporos Int 23:171–182CrossRefPubMedGoogle Scholar
  4. 4.
    Cohen A, Fleischer J, Freeby MJ, McMahon DJ, Irani D, Shane E (2009) Clinical characteristics and medication use among premenopausal women with osteoporosis and low BMD: the experience of an osteoporosis referral center. J Womens Health 18:79–84CrossRefGoogle Scholar
  5. 5.
    Cohen A, Dempster DW, Recker RR, Stein EM, Lappe JM, Zhou H, Wirth AJ, van Lenthe GH, Kohler T, Zwahlen A (2011) Abnormal bone microarchitecture and evidence of osteoblast dysfunction in premenopausal women with idiopathic osteoporosis. J Clin Endocrinol Metab 96:3095–3105CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hung LK, Wu HT, Leung PC, Qin L (2005) Low BMD is a risk factor for low-energy Colles’ fractures in women before and after menopause. Clin Orthop Relat Res 435:219–225CrossRefGoogle Scholar
  7. 7.
    Lappe J, Davies K, Recker R, Heaney R (2005) Quantitative ultrasound: use in screening for susceptibility to stress fractures in female army recruits. J Bone Miner Res 20:571–578CrossRefPubMedGoogle Scholar
  8. 8.
    Lauder TD, Dixit S, Pezzin LE, Williams MV, Campbell CS, Davis GD (2000) The relation between stress fractures and bone mineral density: evidence from active-duty army women. Arch Phys Med Rehabil 81:73–79CrossRefPubMedGoogle Scholar
  9. 9.
    Woodson G (2000) Dual X-ray absorptiometry T-score concordance and discordance between hip and spine measurement sites. J Clin Densitom 3:319–324CrossRefPubMedGoogle Scholar
  10. 10.
    Abrahamsen B, Stilgren L, Hermann AP, Tofteng C, Bärenholdt O, Vestergaard P, Brot C, Nielsen S (2001) Discordance between changes in bone mineral density measured at different skeletal sites in perimenopausal women—implications for assessment of bone loss and response to therapy: the Danish Osteoporosis Prevention Study. J Bone Miner Res 16:1212–1219CrossRefPubMedGoogle Scholar
  11. 11.
    Hans D, Rizzoli R, Thiébaud D, Lippuner K, Allaoua S, Genton L, Luzuy F, Krieg MA, Jaeger P, Slosman DO (2002) Reference data in a Swiss population: discordance in patient classification Using T-scores among calcaneum, spine, and femur. J Clin Densitom 4:291–298CrossRefGoogle Scholar
  12. 12.
    O’Gradaigh D, Debiram I, Love S, Richards H, Compston J (2003) A prospective study of discordance in diagnosis of osteoporosis using spine and proximal femur bone densitometry. Osteoporos Int 14:13–18CrossRefPubMedGoogle Scholar
  13. 13.
    Moayyeri A, Soltani A, Tabari NK, Sadatsafavi M, Hossein-neghad A, Larijani B (2005) Discordance in diagnosis of osteoporosis using spine and hip bone densitometry. BMC Endocr Disord 5:3CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    El Maghraoui A, Abayi DAM, Ghozlani I, Mounach A, Nouijai A, Ghazi M, Achemlal L, Bezza A (2007) Prevalence and risk factors of discordance in diagnosis of osteoporosis using spine and hip bone densitometry. Ann Rheum Dis 66:271–272CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kweon S, Kim Y, M-j Jang, Kim Y, Kim K, Choi S, Chun C, Khang Y-H, Oh K (2014) Data resource profile: the Korea national health and nutrition examination survey (KNHANES). Int J Epidemiol 43:69–77CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tan K (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363:157–163CrossRefGoogle Scholar
  17. 17.
    Choi HS, Oh HJ, Choi H, Choi WH, Kim JG, Kim KM, Kim KJ, Rhee Y, Lim S-K (2011) Vitamin D insufficiency in Korea—a greater threat to younger generation: the Korea National Health and Nutrition Examination Survey (KNHANES) 2008. J Clin Endocrinol Metab 96:643–651CrossRefPubMedGoogle Scholar
  18. 18.
    Hosmer W, Genant H, Browner W (2002) Fractures before menopause: a red flag for physicians. Osteoporos Int 13:337–341CrossRefPubMedGoogle Scholar
  19. 19.
    Choi SH, An JH, Lim S, Koo BK, Park SE, Chang HJ, Choi SI, Park YJ, Park KS, Jang HC (2009) Lower bone mineral density is associated with higher coronary calcification and coronary plaque burdens by multidetector row coronary computed tomography in pre- and postmenopausal women. Clin Endocrinol Oxf 71:644–651CrossRefPubMedGoogle Scholar
  20. 20.
    De Laet C, Kanis J, Odén A, Johanson H, Johnell O, Delmas P, Eisman J, Kroger H, Fujiwara S, Garnero P (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16:1330–1338CrossRefPubMedGoogle Scholar
  21. 21.
    Galusca B, Zouch M, Germain N, Bossu C, Frere D, Lang F, Lafage-Proust M-H, Thomas T, Vico L, Estour B (2008) Constitutional thinness: unusual human phenotype of low bone quality. J Clin Endocrinol Metab 93:110–117CrossRefPubMedGoogle Scholar
  22. 22.
    Russell M, Mendes N, Miller KK, Rosen CJ, Lee H, Klibanski A, Misra M (2010) Visceral fat is a negative predictor of bone density measures in obese adolescent girls. J Clin Endocrinol Metab 95:1247–1255CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ, Gerweck AV, Harrington LM, Breggia A, Rosen CJ, Miller KK (2011) Determinants of bone mineral density in obese premenopausal women. Bone 48:748–754CrossRefPubMedGoogle Scholar
  24. 24.
    Adami S, Bertoldo F, Braga V, Fracassi E, Gatti D, Gandolini G, Minisola S, Battista Rini G (2009) 25-Hydroxy vitamin D levels in healthy premenopausal women: association with bone turnover markers and bone mineral density. Bone 45:423–426CrossRefPubMedGoogle Scholar
  25. 25.
    Adami S, Zivelonghi A, Braga V, Fracassi E, Gatti D, Rossini M, Ulivieri FM, Viapiana O (2010) Insulin-like growth factor-1 is associated with bone formation markers, PTH and bone mineral density in healthy premenopausal women. Bone 46:244–247CrossRefPubMedGoogle Scholar
  26. 26.
    Sornay-Rendu E, Karras-Guillibert C, Munoz F, Claustrat B, Chapurlat RD (2012) Age determines longitudinal changes in body composition better than menopausal and bone status: the OFELY study. J Bone Miner Res 27:628–636CrossRefPubMedGoogle Scholar
  27. 27.
    Teng K (2011) Premenopausal osteoporosis, an overlooked consequence of anorexia nervosa. Cleve Clin J Med 78:50–58CrossRefPubMedGoogle Scholar
  28. 28.
    Felson DT, Zhang Y, Hannan MT, Anderson JJ (1993) Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J Bone Miner Res 8:567–573CrossRefPubMedGoogle Scholar
  29. 29.
    Pruitt LA, Jackson RD, Bartels RL, Lehnhard HJ (1992) Weight-training effects on bone mineral density in early postmenopausal women. J Bone Miner Res 7:179–185CrossRefPubMedGoogle Scholar
  30. 30.
    Kohrt WM, Snead DB, Slatopolsky E, Birge SJ (1995) Additive effects of weight-bearing exercise and estrogen on bone mineral density in older women. J Bone Miner Res 10:1303–1311CrossRefPubMedGoogle Scholar
  31. 31.
    Lips P (2001) Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 22:477–501CrossRefPubMedGoogle Scholar
  32. 32.
    Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, McDaniel L, Amin S, Rouleau PA, Khosla S (2008) A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res 23:205–214CrossRefPubMedGoogle Scholar
  33. 33.
    Khosla S, Melton LJ, Riggs BL (2011) The unitary model for estrogen deficiency and the pathogenesis of osteoporosis: is a revision needed? J Bone Miner Res 26:441–451CrossRefPubMedGoogle Scholar
  34. 34.
    Erdogan M, Yıldız H, Artan S, Solak M, Taşcıoğlu F, Dündar Ü, Eser B, Colak E (2011) Association of estrogen receptor alpha and collagen type I alpha 1 gene polymorphisms with bone mineral density in postmenopausal women. Osteoporos Int 22:1219–1225CrossRefPubMedGoogle Scholar
  35. 35.
    Napoli N, Varadharajan A, Rini GB, Del Fiacco R, Yarramaneni J, Mumm S, Villareal DT, Armamento-Villareal R (2009) Effects of polymorphisms of the sex hormone-binding globulin (SHBG) gene on free estradiol and bone mineral density. Bone 45:1169–1174CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Duncan EL, Danoy P, Kemp JP, Leo PJ, McCloskey E, Nicholson GC, Eastell R, Prince RL, Eisman JA, Jones G (2011) Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genet 7:e1001372CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Orimo H, Sugioka Y, Fukunaga M, Muto Y, Hotokebuchi T, Gorai I, Nakamura T, Kushida K, Tanaka H, Ikai T (1998) Diagnostic criteria of primary osteoporosis. J Bone Miner Metab 16:139–150CrossRefGoogle Scholar
  38. 38.
    Wu F, Mason B, Horne A, Ames R, Clearwater J, Liu M, Evans MC, Gamble GD, Reid IR (2002) Fractures between the ages of 20 and 50 years increase women’s risk of subsequent fractures. Arch Intern Med 162:33–36CrossRefPubMedGoogle Scholar
  39. 39.
    Ho-Pham LT, Nguyen UD, Pham HN, Nguyen ND, Nguyen TV (2011) Reference ranges for bone mineral density and prevalence of osteoporosis in Vietnamese men and women. BMC Musculoskelet Disord 12:182CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cheng X-G, Yang D-Z, Zhou Q, Zhuo T-J, Zhang H-C, Xiang J, Wang H-F, Ou P-Z, Liu J-L, Xu L (2007) Age-related bone mineral density, bone loss rate, prevalence of osteoporosis, and reference database of women at multiple centers in China. J Clin Densitom 10:276–284CrossRefPubMedGoogle Scholar
  41. 41.
    Kin K, Kushida K, Yamazaki K, Okamoto S, Inoue T (1991) Bone mineral density of the spine in normal Japanese subjects using dual-energy X-ray absorptiometry: effect of obesity and menopausal status. Calcif Tissue Int 49:101–106CrossRefPubMedGoogle Scholar
  42. 42.
    Park EJ, Joo IW, Jang M-J, Kim YT, Oh K, Oh HJ (2014) Prevalence of osteoporosis in the Korean population based on Korea National Health and Nutrition Examination Survey (KNHANES), 2008–2011. Yonsei Med J 55:1049–1057CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Cohen A, Lang TF, McMahon DJ, Liu XS, Guo XE, Zhang C, Stein EM, Dempster DW, Young P, Saeed I (2012) Central QCT reveals lower volumetric BMD and stiffness in premenopausal women with idiopathic osteoporosis, regardless of fracture history. J Clin Endocrinol Metab 97:4244–4252CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer Japan 2015

Authors and Affiliations

  • Kyeong Hye Park
    • 1
    • 2
  • Jung Soo Lim
    • 2
    • 3
  • Kyoung Min Kim
    • 4
  • Yumie Rhee
    • 5
  • Sung-Kil Lim
    • 5
    Email author
  1. 1.Division of Endocrinology and Metabolism, Department of Internal MedicineNational Health Insurance Service Ilsan HospitalGoyangSouth Korea
  2. 2.Yonsei University Graduate School of MedicineSeoulSouth Korea
  3. 3.Department of Internal MedicineYonsei University Wonju College of MedicineWonjuSouth Korea
  4. 4.Department of Internal MedicineSeoul National University Bundang HospitalSungnamSouth Korea
  5. 5.Division of Endocrinology, Department of Internal MedicineYonsei University College of MedicineSeoulSouth Korea

Personalised recommendations