Advertisement

Journal of Bone and Mineral Metabolism

, Volume 34, Issue 5, pp 540–546 | Cite as

Effects of strontium ranelate on bone mass and bone turnover in women with thalassemia major-related osteoporosis

  • Nunziata Morabito
  • Antonino CatalanoEmail author
  • Agostino Gaudio
  • Elisabetta Morini
  • Lucia Maria Bruno
  • Giorgio Basile
  • Eleni Tsiantouli
  • Federica Bellone
  • Rita Maria Agostino
  • Basilia Piraino
  • Maria Angela La Rosa
  • Carmelo Salpietro
  • Antonino Lasco
Original Article

Abstract

Subjects affected by thalassemia major (TM) often have reduced bone mass and increased fracture risk. Strontium ranelate (SrR) is an effective treatment for postmenopausal and male osteoporosis. To date, no data exist on the use of SrR in the treatment of TM-related osteoporosis. Our aim was to evaluate the effects of SrR on bone mineral density (BMD), bone turnover markers and inhibitors of Wnt signaling (sclerostin and DKK-1). Twenty-four TM osteoporotic women were randomized to receive daily SrR 2 g or placebo in addition to calcium carbonate (1,000 mg) and vitamin D (800 IU). BMD at the lumbar spine and femoral neck, bone turnover markers (C-terminal telopeptide of procollagen type I [CTX], bone-specific alkaline phosphatase [BSAP]) and insulin-like growth factor-1 (IGF-1), sclerostin and DKK-1 were assessed at baseline and after 24 months. Back pain was measured by visual analog scale (VAS) every 6 months. After 24 months, TM women treated with SrR had increased their spine BMD values in comparison to baseline (p < 0.05). Moreover, they also exhibited a reduction of CTX and sclerostin levels (but not DKK-1) and exhibited an increase of BSAP and IGF-1 (p < 0.05); however, no significant changes were observed in the placebo group. In the SrR group, a reduction of back pain was observed after 18 months in comparison to baseline (p < 0.05) and after 24 months in comparison to placebo (p < 0.05). Our study reports for the first time the effects of SrR in the treatment of TM-related osteoporosis. SrR treatment improved BMD and normalized bone turnover markers, as well as lowering sclerostin serum levels.

Keywords

Thalassemia Osteoporosis DKK-1 Strontium ranelate Sclerostin 

Notes

Acknowledgments

We would like to thank Dr. Corrado Andrè for DXA assessment of subjects involved in this research study.

Conflict of Interest

Nunziata Morabito, Antonino Catalano, Agostino Gaudio, Elisabetta Morini, Lucia Maria Bruno, Giorgio Basile, Eleni Tsiantouli, Federica Bellone, Rita Maria Agostino, Basilia Piraino, Maria Angela La Rosa, Carmelo Salpietro and Antonino Lasco declare that they have no conflict of interest.

References

  1. 1.
    Wong P, Fuller PJ, Gillespie MT, Kartsogiannis V, Kerr PG, Doery JC, Paul E, Bowden DK, Strauss BJ, Milat F (2014) Thalassemia bone disease: a 19 year longitudinal analysis. J Bone Miner Res 29:2468–2473CrossRefPubMedGoogle Scholar
  2. 2.
    Ruggiero L, De Sanctis V (1998) Multicentre study on prevalence of fractures in transfusion-dependent thalassaemic patients. J Pediatr Endocrinol Metab 11:773–778PubMedGoogle Scholar
  3. 3.
    Lasco A, Morabito N, Gaudio A, Crisafulli A, Meo A, Denuzzo G, Frisina N (2002) Osteoporosis and beta-thalassemia major: role of the IGF-I/IGFBP-III axis. J Endocrinol Invest 25:338–344CrossRefPubMedGoogle Scholar
  4. 4.
    Morabito N, Gaudio A, Lasco A, Atteritano M, Pizzoleo MA, Cincotta M, La Rosa M, Guarino R, Meo A, Frisina N (2004) Osteoprotegerin and RANKL in the pathogenesis of thalassemia-induced osteoporosis: new pieces of the puzzle. J Bone Miner Res 19:722–727CrossRefPubMedGoogle Scholar
  5. 5.
    Mahachoklertwattana P, Sirikulchayanonta V, Chuansumrit A, Karnsombat P, Choubtum L, Sriphrapradang A, Domrongkitchaiporn S, Sirisriro R, Rajatanavin R (2003) Bone histomorphometry in children and adolescents with beta-thalassemia disease: iron-associated focal osteomalacia. J Clin Endocrinol Metab 88:3966–3972CrossRefPubMedGoogle Scholar
  6. 6.
    Morabito N, Russo GT, Gaudio A, Lasco A, Catalano A, Morini E, Franchina F, Maisano D, La Rosa M, Plota M, Crifò A, Meo A, Frisina N (2007) The “lively” cytokines network in beta-Thalassemia Major-related osteoporosis. Bone 40:1588–1594CrossRefPubMedGoogle Scholar
  7. 7.
    Lasco A, Morabito N, Gaudio A, Buemi M, Wasniewska M, Frisina N (2001) Effects of hormonal replacement therapy on bone metabolism in young adults with β-thalassemia major. Osteoporos Int 12:570–575CrossRefPubMedGoogle Scholar
  8. 8.
    Morabito N, Lasco A, Gaudio A, Crisafulli A, Di Pietro C, Meo A, Frisina N (2002) Bisphosphonates in the treatment of thalassemia-induced osteoporosis. Osteoporos Int 13:644–649CrossRefPubMedGoogle Scholar
  9. 9.
    Giusti A (2014) Bisphosphonates in the management of thalassemia-associated osteoporosis: a systematic review of randomised controlled trials. J Bone Miner Metab 32:606–615CrossRefPubMedGoogle Scholar
  10. 10.
    Voskaridou E, Terpos E (2008) Pathogenesis and management of osteoporosis in thalassemia. Pediatr Endocrinol Rev 6:86–93PubMedGoogle Scholar
  11. 11.
    Rossini M, Gatti D, Adami S (2013) Involvement of WNT/b-catenin signaling in the treatment of osteoporosis. Calcif Tissue Int 93:121–132CrossRefPubMedGoogle Scholar
  12. 12.
    Catalano A, Morabito N, Basile G, Brancatelli S, Cucinotta D, Lasco A (2013) Zoledronic acid acutely increases sclerostin serum levels in women with postmenopausal osteoporosis. J Clin Endocrinol Metab 98:1911–1915CrossRefPubMedGoogle Scholar
  13. 13.
    Voskaridou E, Christoulas D, Xirakia C, Varvagiannis K, Boutsikas G, Bilalis A, Kastritis E, Papatheodorou A, Terpos E (2009) Serum Dickkopf-1 is increased and correlates with reduced bone mineral density in patients with thalassemia-induced osteoporosis. Reduction post-zoledronic acid administration. Haematologica 94:725–728PubMedGoogle Scholar
  14. 14.
    Voskaridou E, Christoulas D, Plata E, Bratengeier C, Anastasilakis AD, Komninaka V, Kaliontzi D, Gkotzamanidou M, Polyzos SA, Dimopoulou M, Terpos E (2012) High circulating sclerostin is present in patients with thalassemia-associated osteoporosis and correlates with bone mineral density. Horm Metab Res 44:909–913CrossRefPubMedGoogle Scholar
  15. 15.
    Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski J, Spector T, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S, Rizzoli R, Genant HK, Reginster JY (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–46825CrossRefPubMedGoogle Scholar
  16. 16.
    Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C, Devogelaer JP, Curiel MD, Sawicki A, Goemaere S, Sorensen OH, Felsenberg D, Meunier PJ (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of peripheral osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90:2816–2822CrossRefPubMedGoogle Scholar
  17. 17.
    Kaufman JM, Audran M, Bianchi G, Braga V, Diaz-Curiel M, Francis RM, Goemaere S, Josse R, Palacios S, Ringe JD, Felsenberg D, Boonen S (2013) Efficacy and safety of strontium ranelate in the treatment of osteoporosis in men. J Clin Endocrinol Metab 98:592–601CrossRefPubMedGoogle Scholar
  18. 18.
    Canalis E, Hott M, Deloffre P, Tsouderos Y, Marie PJ (1996) The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone 18:517–523CrossRefPubMedGoogle Scholar
  19. 19.
    Marie PJ, Hott M, Modrowski D, De Pollak C, Guillemain J, Deloffre P, Tsouderos Y (1993) An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen-deficient rats. J Bone Miner Res 8:607–615CrossRefPubMedGoogle Scholar
  20. 20.
    Marie PJ, Ammann P, Boivin G, Rey C (2001) Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 69:121–129CrossRefPubMedGoogle Scholar
  21. 21.
    Bonnelye E, Chabadel A, Saltel F, Jurdic P (2008) Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 42:129–138CrossRefPubMedGoogle Scholar
  22. 22.
    Marie PJ, Felsenberg D, Brandi ML (2011) How strontium ranelate, via opposite effects on bone resorption and formation, prevents osteoporosis. Osteoporos Int 22:1659–1667CrossRefPubMedGoogle Scholar
  23. 23.
    Stepan JJ (2013) Strontium ranelate: in search for the mechanism of action. J Bone Miner Metab 31:606–612CrossRefPubMedGoogle Scholar
  24. 24.
    Ammann P, Badoud I, Barraud S, Dayer R, Rizzoli R (2007) Strontium ranelate treatment improves trabecular and cortical intrinsic bone tissue quality, a determinant of bone strength. J Bone Miner Res 22:1419–1425CrossRefPubMedGoogle Scholar
  25. 25.
    Reginster JY, Kaufman JM, Goemaere S, Devogelaer JP, Benhamou CL, Felsenberg D, Diaz-Curiel M, Brandi ML, Badurski J, Wark J, Balogh A, Bruyère O, Roux C (2012) Maintenance of antifracture efficacy over 10 years with strontium ranelate in postmenopausal osteoporosis. Osteoporos Int 23:1115–1122CrossRefPubMedGoogle Scholar
  26. 26.
    Rybchyn MS, Slater M, Conigrave AD, Mason RS (2011) An Akt-dependent increase in canonical Wnt signaling and a decrease in sclerostin protein levels are involved in strontium ranelate-induced osteogenic effects in human osteoblasts. J Biol Chem 286:23771–23779CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gulhan I, Bilgili S, Gunaydin R, Gulhan S, Posaci C (2008) The effect of strontium ranelate on serum insulin like growth factor-1 and leptin levels in osteoporotic post-menopausal women: a prospective study. Arch Gynecol Obstet 278:437–441CrossRefPubMedGoogle Scholar
  28. 28.
    Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser (1994) 843:1–129Google Scholar
  29. 29.
    Catalano A, Morabito N, Basile G, Fusco S, Castagna G, Reitano F, Albanese RC, Lasco A (2013) Fracture risk assessment in postmenopausal women referred to an Italian center for osteoporosis: a single day experience in Messina. Clin Cases Miner Bone Metab 10:191–194PubMedGoogle Scholar
  30. 30.
    Reginster JY, Deroisy R, Dougados M, Jupsin I, Colette J, Roux C (2002) Prevention of early postmenopausal bone loss by strontium ranelate: the randomised, 2 year, double masked, dose-ranging, placebo-controlled PREVOS study. Osteoporos Int 13:925–931CrossRefPubMedGoogle Scholar
  31. 31.
    Meunier PJ, Slosman DO, Delmas PD, Sebert JL, Brandi ML, Albanese C, Lorenc R, Pors-Neilsen S, de Vernejoul MC, Roces A, Reginster JY (2002) Strontium ranelate: dose-dependent effects in established postmenopausal vertebral osteoporosis–a 2 year randomised placebo controlled trial. J Clin Endocrinol Metab 87:2060–2066PubMedGoogle Scholar
  32. 32.
    Bruyere O, Roux C, Detilleux J, Slosman DO, Spector TD, Fardellone P, Brixen K, Devogelaer JP, Diaz-Curiel M, Albanese C, Kaufman JM, Pors-Nielsen S, Reginster JY (2007) Relation between bone mineral density changes and fracture risk reduction in patients treated with strontium ranelate. J Clin Endocrinol Metab 92:3076–3081CrossRefPubMedGoogle Scholar
  33. 33.
    Doyard M, Fatih N, Monnier A, Island ML, Aubry M, Leroyer P, Bouvet R, Chalès G, Mosser J, Loréal O, Guggenbuhl P (2012) Iron excess limits HHIPL-2 gene expression and decreases osteoblastic activity in human MG-63 cells. Osteoporos Int 23:2435–2445CrossRefPubMedGoogle Scholar
  34. 34.
    Middleton ET, Steel SA, Aye M, Doherty SM (2012) The effect of prior bisphosphonate therapy on the subsequent therapeutic effects of strontium ranelate over 2 years. Osteoporos Int 23:295–303CrossRefPubMedGoogle Scholar
  35. 35.
    Catalano A, Morabito N, Di Stefano A, Morini M, Basile G, Faraci B, Loddo S, Ientile R, Lasco A (2015) Vitamin D and bone mineral density changes in postmenopausal women treated with strontium ranelate. JENI. doi: 10.1007/s40618-015-0299-2 Google Scholar
  36. 36.
    European medicines agency. Press release: European medicines agency recommends that protelos/osseor remain available but with further restrictions (2014) http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2014/02/news_detail_002031. jsp&mid = WC0b01ac58001d126
  37. 37.
    Marquis P, Roux C, de la Loge C, Diaz-Curiel M, Cormier C, Isaia G, Badurski J, Wark J, Meunier PJ (2008) Strontium ranelate prevents quality of life impairment in post-menopausal women with established vertebral osteoporosis. Osteoporos Int 19:503–510CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer Japan 2015

Authors and Affiliations

  • Nunziata Morabito
    • 1
  • Antonino Catalano
    • 1
    Email author
  • Agostino Gaudio
    • 2
  • Elisabetta Morini
    • 1
  • Lucia Maria Bruno
    • 1
  • Giorgio Basile
    • 1
  • Eleni Tsiantouli
    • 1
  • Federica Bellone
    • 1
  • Rita Maria Agostino
    • 3
  • Basilia Piraino
    • 4
  • Maria Angela La Rosa
    • 4
  • Carmelo Salpietro
    • 4
  • Antonino Lasco
    • 1
  1. 1.Department of Clinical and Experimental MedicineUniversity Hospital of MessinaMessinaItaly
  2. 2.Department of Medical and Pediatric SciencesUniversity of CataniaCataniaItaly
  3. 3.Department of Human PathologyUniversity of MessinaMessinaItaly
  4. 4.Department of Pediatric SciencesUniversity Hospital of MessinaMessinaItaly

Personalised recommendations