Advertisement

Journal of Bone and Mineral Metabolism

, Volume 33, Issue 6, pp 701–707 | Cite as

Higher plasma platelet-activating factor levels are associated with increased risk of vertebral fracture and lower bone mineral density in postmenopausal women

  • Hyeonmok Kim
  • Beom-Jun KimEmail author
  • Seong Hee Ahn
  • Seung Hun Lee
  • Jung-Min Koh
Original Article

Abstract

Despite experimental and animal evidence showing the detrimental effects of platelet-activating factor (PAF) on bone metabolism, there are no clinical studies relating PAF to osteoporosis-related phenotypes. This case–control study investigates the association between plasma PAF, osteoporotic vertebral fracture (VF), and bone mineral density (BMD) in postmenopausal Korean women. Among 474 eligible women not taking any drug or having any disease that could affect bone metabolism, we identified 73 cases defined as subjects with radiological VF. The controls were randomly selected from the remaining 401 subjects and matched 1:1 to cases in terms of both age and body mass index (BMI). Lateral thoracolumbar radiographs, BMD, and plasma PAF levels were determined for all subjects. Postmenopausal women with VF demonstrated 34.6 % higher plasma PAF levels than subjects without VF after adjusting for age, BMI, smoking habits, alcohol intake, regular exercise, and parental history of osteoporotic fractures (P = 0.021). Multiple logistic regression analyses revealed that the odds ratio for VF linearly increased across increasing PAF quartiles (P for trend = 0.040) and the odds for VF were 2.88-fold higher in subjects in the highest quartile in comparison with those in the lowest quartile (95 % CI 1.04–8.01). Plasma PAF levels were inversely correlated with BMD at various sites (γ = −0.253 to −0.176, P = 0.003–0.041). These findings suggest that plasma PAF may be a potential biomarker for predicting poor bone health in postmenopausal women.

Keywords

Platelet-activating factor Vertebral fracture Bone mineral density Osteoporosis Postmenopause 

Notes

Acknowledgements

This study was supported by grants from the Korea Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea (project no. HI13C1634 and HI13C1432)

Conflict of interest

All authors have no conflicts of interest.

References

  1. 1.
    Hattner R, Epker BN, Frost HM (1965) Suggested sequential mode of control of changes in cell behaviour in adult bone remodelling. Nature 206:489–490CrossRefPubMedGoogle Scholar
  2. 2.
    Seeman E (2008) Bone quality: the material and structural basis of bone strength. J Bone Miner Metab 26:1–8CrossRefPubMedGoogle Scholar
  3. 3.
    Riggs BL, Khosla S, Melton LJ 3rd (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302CrossRefPubMedGoogle Scholar
  4. 4.
    Tatsuno I, Terano T, Nakamura M, Suzuki K, Kubota K et al (2013) Lifestyle and osteoporosis in middle-aged and elderly women: Chiba bone survey. Endocr J 60:643–650CrossRefPubMedGoogle Scholar
  5. 5.
    Melton LJ 3rd (1993) Hip fractures: a worldwide problem today and tomorrow. Bone 14(Suppl 1):S1–S8CrossRefPubMedGoogle Scholar
  6. 6.
    Yi H, Ha YC, Lee YK, Lim YT (2013) National healthcare budget impact analysis of the treatment for osteoporosis and fractures in Korea. J Bone Metab 20:17–23PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Kang BJ, Lee YK, Lee KW, Won SH, Ha YC et al (2012) Mortality after hip fractures in nonagenarians. J Bone Metab 19:83–86PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Prescott SM, Zimmerman GA, Stafforini DM, McIntyre TM (2000) Platelet-activating factor and related lipid mediators. Annu Rev Biochem 69:419–445CrossRefPubMedGoogle Scholar
  9. 9.
    Ishii S, Shimizu T (2000) Platelet-activating factor (PAF) receptor and genetically engineered PAF receptor mutant mice. Prog Lipid Res 39:41–82CrossRefPubMedGoogle Scholar
  10. 10.
    Ishii S, Kuwaki T, Nagase T, Tashiro F, Sunaga S et al (1998) Impaired anaphylactic responses with intact sensitivity to endotoxin in mice lacking a platelet-activating factor receptor. J Exp Med 187:1779–1788PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Ishii S, Nagase T, Shindou H, Takizawa H, Ouchi Y et al (2004) Platelet-activating factor receptor develops airway hyperresponsiveness independently of airway inflammation in a murine asthma model. J Immunol 172:7095–7102CrossRefPubMedGoogle Scholar
  12. 12.
    Montrucchio G, Alloatti G, Camussi G (2000) Role of platelet-activating factor in cardiovascular pathophysiology. Physiol Rev 80:1669–1699PubMedGoogle Scholar
  13. 13.
    Noguchi K, Morita I, Murota S (1989) The detection of platelet-activating factor in inflamed human gingival tissue. Arch Oral Biol 34:37–41CrossRefPubMedGoogle Scholar
  14. 14.
    Pettipher ER, Higgs GA, Henderson B (1987) PAF-acether in chronic arthritis. Agents Actions 21:98–103CrossRefPubMedGoogle Scholar
  15. 15.
    Zheng ZG, Wood DA, Sims SM, Dixon SJ (1993) Platelet-activating factor stimulates resorption by rabbit osteoclasts in vitro. Am J Physiol 264:E74–E81PubMedGoogle Scholar
  16. 16.
    Wood DA, Hapak LK, Sims SM, Dixon SJ (1991) Direct effects of platelet-activating factor on isolated rat osteoclasts. Rapid elevation of intracellular free calcium and transient retraction of pseudopods. J Biol Chem 266:15369–15376PubMedGoogle Scholar
  17. 17.
    Hikiji H, Ishii S, Shindou H, Takato T, Shimizu T (2004) Absence of platelet-activating factor receptor protects mice from osteoporosis following ovariectomy. J Clin Invest 114:85–93PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Kiel D (1995) Assessing vertebral fractures. National Osteoporosis Foundation Working Group on vertebral fractures. J Bone Miner Res 10:518–523PubMedGoogle Scholar
  19. 19.
    Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148CrossRefPubMedGoogle Scholar
  20. 20.
    Feng X, McDonald JM (2011) Disorders of bone remodeling. Annu Rev Pathol 6:121–145PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Weitzmann MN, Pacifici R (2006) Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 116:1186–1194PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21:115–137PubMedGoogle Scholar
  23. 23.
    Gowen M, Mundy GR (1986) Actions of recombinant interleukin 1, interleukin 2, and interferon-gamma on bone resorption in vitro. J Immunol 136:2478–2482PubMedGoogle Scholar
  24. 24.
    Benveniste J, Henson PM, Cochrane CG (1972) Leukocyte-dependent histamine release from rabbit platelets. The role of IgE, basophils, and a platelet-activating factor. J Exp Med 136:1356–1377PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Madeira MF, Queiroz-Junior CM, Costa GM, Werneck SM, Cisalpino D et al (2013) Platelet-activating factor receptor blockade ameliorates Aggregatibacter actinomycetemcomitans-induced periodontal disease in mice. Infect Immun 81:4244–4251PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Green S, Anstiss CL, Fishman WH (1971) Automated differential isoenzyme analysis. II. The fractionation of serum alkaline phosphatases into “liver”, “intestinal” and “other” components. Enzymologia 41:9–26PubMedGoogle Scholar
  27. 27.
    van Straalen JP, Sanders E, Prummel MF, Sanders GT (1991) Bone-alkaline phosphatase as indicator of bone formation. Clin Chim Acta 201:27–33CrossRefPubMedGoogle Scholar
  28. 28.
    Ross PD, Fujiwara S, Huang C, Davis JW, Epstein RS et al (1995) Vertebral fracture prevalence in women in Hiroshima compared to Caucasians or Japanese in the US. Int J Epidemiol 24:1171–1177CrossRefPubMedGoogle Scholar
  29. 29.
    Ling X, Cummings SR, Mingwei Q, Xihe Z, Xioashu C et al (2000) Vertebral fractures in Beijing, China: the Beijing Osteoporosis Project. J Bone Miner Res 15:2019–2025CrossRefPubMedGoogle Scholar
  30. 30.
    Hudry-Clergeon H, Stengel D, Ninio E, Vilgrain I (2005) Platelet-activating factor increases VE-cadherin tyrosine phosphorylation in mouse endothelial cells and its association with the PtdIns3′-kinase. Faseb J 19:512–520CrossRefPubMedGoogle Scholar
  31. 31.
    Prescott SM, McIntyre TM, Zimmerman GA, Stafforini DM (2002) Sol Sherry lecture in thrombosis: molecular events in acute inflammation. Arterioscler Thromb Vasc Biol 22:727–733CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer Japan 2014

Authors and Affiliations

  • Hyeonmok Kim
    • 1
  • Beom-Jun Kim
    • 1
    Email author
  • Seong Hee Ahn
    • 1
  • Seung Hun Lee
    • 1
  • Jung-Min Koh
    • 1
  1. 1.Division of Endocrinology and Metabolism, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea

Personalised recommendations