Advertisement

Journal of Bone and Mineral Metabolism

, Volume 33, Issue 2, pp 154–160 | Cite as

Effect of Urocortin on strength and microarchitecture of osteopenic rat femur

  • Mohammad TezvalEmail author
  • Silja Hansen
  • Ulrich Schmelz
  • Marina Komrakova
  • Klaus Michael Stuermer
  • Stephan Sehmisch
Original Article

Abstract

As yet there is no evidence of the potential antiosteoporotic effect of Urocortin-1 (UCN), a corticotropin releasing factor related peptide, in vivo. In this study, and for the first time, we investigated the effect of UCN in a rat osteopenia model. Sixty female Sprague–Dawley rats were divided into 5 groups: (1) sham-operated, (2) untreated ovariectomized (OVX) rats, (3) and (4) OVX animals treated for 5 weeks with daily subcutaneous low-dose UCN (3 μg/kg of BW) or high-dose UCN (30 μg/kg of BW) 8 weeks after ovariectomy, and (5) OVX rats treated with daily estrogen (0.2 mg/kg of BW p.o) 8 weeks after ovariectomy for 5 weeks (E). After sacrifice, the femurs were reserved for biomechanical, histomorphometric and ash testing. In the biomechanical test, the high-dose UCN rats showed significantly improved mechanical stiffness (341.6 N/mm) compared with the untreated OVX animals (275.9 N/mm). In the histomorphometric evaluation, the high-dose UCN rats demonstrated an improved trabecular microarchitecture especially and significantly at the distal femur (distal femur Tb.Ar = 41.4 % and N.Nd/mm2 = 26.8, proximal femur Tb.Ar = 71.8 % and N.Nd/mm2 = 28.7) compared with untreated OVX rats (distal femur Tb.Ar = 23.3 % and N.Nd/mm2 = 11.7, proximal femur Tb.Ar = 60.2 % and N.Nd/mm2 = 25.2). Our results show that short-term treatment with UCN seems to have a positive effect on the metaphyseal bone structure and strength of the femur in ovariectomized rats.

Keywords

Urocortin-1 Osteoporosis Femur Ovariectomized rat Bone quality 

Notes

Acknowledgments

The authors thank R. Castro and A. Witt for their support of the animal trial.

Conflict of interest

All authors have no conflicts of interest.

References

  1. 1.
    Vaughan J, Donaldson C, Bittencourt J, Perrin MH, Lewis K, Sutton S, Chan R, Turnbull AV, Lovejoy D, Rivier C et al (1995) Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 378:287–292CrossRefPubMedGoogle Scholar
  2. 2.
    Boorse GC, Denver RJ (2006) Widespread tissue distribution and diverse functions of corticotropin-releasing factor and related peptides. Gen Comp Endocrinol 146:9–18CrossRefPubMedGoogle Scholar
  3. 3.
    Bale TL, Hoshijima M, Gu Y, Dalton N, Anderson KR, Lee KF, Rivier J, Chien KR, Vale WW, Peterson KL (2004) The cardiovascular physiologic actions of urocortin II: acute effects in murine heart failure. Proc Natl Acad Sci USA 101:3697–3702CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Fekete EM, Zorrilla EP (2007) Physiology, pharmacology, and therapeutic relevance of urocortins in mammals: ancient CRF paralogs. Front Neuroendocrinol 28:1–27CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Chatzaki E, Euthymiadis C, Kyriaki S, Lambropoulou M, Tsaroucha A, Laftsidis P, Simopoulos K (2005) Urocortin and corticotropin-releasing hormone receptor type 2 expression in the human gallbladder. Neuroendocrinology 82:177–184CrossRefPubMedGoogle Scholar
  6. 6.
    Slominski A, Wortsman J (2000) Neuroendocrinology of the skin. Endocr Rev 21:457–487PubMedGoogle Scholar
  7. 7.
    Henry B, Vale W, Markou A (2006) The effect of lateral septum corticotropin-releasing factor receptor 2 activation on anxiety is modulated by stress. J Neurosci 26:9142–9152CrossRefPubMedGoogle Scholar
  8. 8.
    Fatima A, Andrabi S, Wolf G, Engelmann M, Spina MG (2013) Urocortin 1 administered into the hypothalamic supraoptic nucleus inhibits food intake in freely fed and food-deprived rats. Amino acids 44:879–885Google Scholar
  9. 9.
    Tezval M, Tezval H, Dresing K, Stuermer EK, Blaschke M, Stuermer KM, Siggelkow H (2009) Differentiation dependent expression of urocortin’s mRNA and peptide in human osteoprogenitor cells: influence of BMP-2, TGF-beta-1 and dexamethasone. J Mol Histol 40:331–341CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Combs CE, Fuller K, Kumar H, Albert AP, Pirianov G, McCormick J, Locke IC, Chambers TJ, Lawrence KM (2012) Urocortin is a novel regulator of osteoclast differentiation and function through inhibition of a canonical transient receptor potential 1-like cation channel. J Endocrinol 212:187–197CrossRefPubMedGoogle Scholar
  11. 11.
    Bagi CM, Berryman E, Moalli MR (2011) Comparative bone anatomy of commonly used laboratory animals: implications for drug discovery. Comp Med 61:76–85PubMedCentralPubMedGoogle Scholar
  12. 12.
    Tezval M, Stuermer EK, Sehmisch S, Rack T, Stary A, Stebener M, Konietschke F, Stuermer KM (2010) Improvement of trochanteric bone quality in an osteoporosis model after short-term treatment with parathyroid hormone: a new mechanical test for trochanteric region of rat femur. Osteoporosis Int J Establ Result Coop Eur Foundation Osteoporos Natl Osteoporos Foundation USA 21:251–261CrossRefGoogle Scholar
  13. 13.
    Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610CrossRefPubMedGoogle Scholar
  14. 14.
    Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. 1:2–17 J Bone Miner ResGoogle Scholar
  15. 15.
    Nazarloo HP, Buttrick PM, Saadat H, Dunn AJ (2006) The roles of corticotropin-releasing factor-related peptides and their receptors in the cardiovascular system. Curr Protein Pept Sci 7:229–239CrossRefPubMedGoogle Scholar
  16. 16.
    Moffatt JD, Lever R, Page CP (2006) Activation of corticotropin-releasing factor receptor-2 causes bronchorelaxation and inhibits pulmonary inflammation in mice. Faseb J 20:1877–1879CrossRefPubMedGoogle Scholar
  17. 17.
    Lawrence KM, Latchman DS (2006) The Urocortins: mechanisms of cardioprotection and therapeutic potential. Mini Rev Med Chem 6:1119–1126CrossRefPubMedGoogle Scholar
  18. 18.
    Latchman DS (2002) Urocortin. Int J Biochem Cell Biol 34:907–910CrossRefPubMedGoogle Scholar
  19. 19.
    Kageyama K, Hanada K, Nigawara T, Moriyama T, Terui K, Sakihara S, Suda T (2006) Urocortin induces interleukin-6 gene expression via cyclooxygenase-2 activity in aortic smooth muscle cells. Endocrinology 147:4454–4462CrossRefPubMedGoogle Scholar
  20. 20.
    Wang L, Stengel A, Goebel-Stengel M, Shaikh A, Yuan PQ, Tache Y (2013) Intravenous injection of urocortin 1 induces a CRF(2) mediated increase in circulating ghrelin and glucose levels through distinct mechanisms in rats. Peptides 39:164–170Google Scholar
  21. 21.
    Wang L, Stengel A, Goebel M, Martinez V, Gourcerol G, Rivier J, Tache Y (2011) Peripheral activation of corticotropin-releasing factor receptor 2 inhibits food intake and alters meal structures in mice. Peptides 32:51–59CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer Japan 2014

Authors and Affiliations

  • Mohammad Tezval
    • 1
    • 3
    Email author
  • Silja Hansen
    • 1
  • Ulrich Schmelz
    • 2
  • Marina Komrakova
    • 1
  • Klaus Michael Stuermer
    • 1
  • Stephan Sehmisch
    • 1
  1. 1.Department of Trauma and Reconstructive SurgeryGeorg-August-University of GoettingenGoettingenGermany
  2. 2.Medical Institute of General Hygiene and Environmental HealthUniversity of GoettingenGoettingenGermany
  3. 3.Department of Trauma and Reconstructive SurgeryUniversity Hospital GoettingenGoettingenGermany

Personalised recommendations