Advertisement

Journal of Bone and Mineral Metabolism

, Volume 33, Issue 1, pp 85–92 | Cite as

Sedentary time has a negative influence on bone mineral parameters in peripubertal boys: a 1-year prospective study

  • Artūrs Ivuškāns
  • Jarek MäestuEmail author
  • Toivo Jürimäe
  • Evelin Lätt
  • Priit Purge
  • Meeli Saar
  • Katre Maasalu
  • Jaak Jürimäe
Original Article

Abstract

One of the key determinants of adult skeletal health is the maximization of bone mass during the growth period. Physical activity (PA) in combination with lean mass and fat mass contribute to a great extent to bone mineral accrual; however, PA changes significantly during puberty. The aim of the present study was to examine PA exposure relative to bone mass acquisition during a longer observation period. Daily PA was measured with 7-day accelerometry and bone mineral parameters by DXA in 11- to 13-year-old peripubertal boys (n = 169). Similar testing was done after 1 calendar year. Changes in sedentary time were negatively related to changes in whole-body bone mineral density (BMD), lumbar spine bone mineral content (BMC), lumbar spine bone area (BA), femoral neck (FN) BMD, and FN BMC (r > −0.157; p < 0.05). Sedentary time emerged as the main PA level in predicting changes in FN BMC (p = 0.027) and in combination with vigorous PA predicting changes in FN BMD (p < 0.024). In addition to the effect of body composition on the skeleton, increase in sedentary time emerged as one main physical activity predictor (in addition to vigorous PA) of bone mineral acquisition during a 12-month period in peripubertal boys.

Keywords

Bone mineral density Sedentary time Accelerometry DXA Boys 

Notes

Acknowledgments

This study was supported by a grant from the Estonian Ministry of Education and Science (TKKSP 0489) and by the European Social Fund’s Doctoral Studies and Internationalisation Programme DoRa.

Conflict of interest

All authors have no conflicts of interest.

References

  1. 1.
    Rizzoli R, Bianchi ML, Garabedian M, McKay HA, Moreno LA (2010) Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone (NY) 46:294–305CrossRefGoogle Scholar
  2. 2.
    Gordon CL, Halton JM, Atkinson SA (1991) The contributions of growth and puberty to peak bone mass. Growth Dev Aging 55:257–262PubMedGoogle Scholar
  3. 3.
    Ausili E, Rigante D, Salvaggio E, Focarelli B, Rendeli C, Ansuini V, Paolucci V, Triarico S, Martini L, Caradonna P (2012) Determinants of bone mineral density, bone mineral content, and body composition in a cohort of healthy children: influence of sex, age, puberty, and physical activity. Rheumatol Int 33:2737–2743CrossRefGoogle Scholar
  4. 4.
    Baptista F, Barrigas C, Vieira F, Santa-Clara H, Homens PM, Fragoso I, Teixeira PJ, Sardinha LB (2012) The role of lean body mass and physical activity in bone health in children. J Bone Miner Metab 30:100–108PubMedCrossRefGoogle Scholar
  5. 5.
    Ho AYY, Kung AWC (2005) Determinants of peak bone mineral density and bone area in young women. J Bone Miner Metab 23:470–475PubMedCrossRefGoogle Scholar
  6. 6.
    Boot AM, de Ridder MA, Pols HA, Krenning EP, de Muinck Keizer-Schrama SM (1997) Bone mineral density in children and adolescents: relation to puberty, calcium intake, and physical activity. J Clin Endocrinol Metab 82:57–62PubMedGoogle Scholar
  7. 7.
    Gracia-Marco L, Ortega FB, Jimenez-Pavon D, Rodriguez G, Castillo MJ, Vicente-Rodriguez G, Moreno LA (2012) Adiposity and bone health in Spanish adolescents. The HELENA study. Osteoporos Int 23:937–947PubMedCrossRefGoogle Scholar
  8. 8.
    Farr JN, Blew RM, Lee VR, Lohman TG, Going SB (2011) Associations of physical activity duration, frequency, and load with volumetric BMD, geometry, and bone strength in young girls. Osteoporos Int 22:1419–1430PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Gracia-Marco L, Ortega FB, Casajús JA, Sioen I, Widhalm K, Béghin L, Vicente-Rodríguez G, Moreno LA (2012) Socioeconomic status and bone mass in Spanish adolescents. The HELENA study. J Adolesc Health 50:484–490PubMedCrossRefGoogle Scholar
  10. 10.
    Janz KF, Letuchy EM, Eichenberger Gilmore JM, Burns TL, Torner JC, Willing MC, Levy SM (2010) Early physical activity provides sustained bone health benefits in later childhood. Med Sci Sports Exerc 42:1072–1078PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Sardinha LB, Baptista F, Ekelund U (2008) Objectively measured physical activity and bone strength in 9-year-old boys and girls. Pediatrics 122:e728–e736PubMedCrossRefGoogle Scholar
  12. 12.
    Sayers A, Mattocks C, Deere K, Ness A, Riddoch C, Tobias JH (2011) Habitual levels of vigorous, but not moderate or light, physical activity is positively related to cortical bone mass in adolescents. J Clin Endocrinol Metab 96:E793–E802PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Sundberg M, Gärdsell P, Johnell O, Karlsson MK, Ornstein E, Sandstedt B, Sernbo I (2002) Physical activity increases bone size in prepubertal boys and bone mass in prepubertal girls: a combined cross-sectional and 3-year longitudinal study. Calcif Tissue Int 71:406–415PubMedCrossRefGoogle Scholar
  14. 14.
    Hind K, Burrows M (2007) Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone (NY) 40:14–27CrossRefGoogle Scholar
  15. 15.
    Courteix D, Lespessailles E, Jaffre C, Obert P, Benhamou CL (1999) Bone mineral acquisition and somatic development in highly trained girl gymnasts. Acta Paediatr 88:803–808PubMedCrossRefGoogle Scholar
  16. 16.
    Welten DC, Kemper HCG, Post GB, van Mechelen W, Twisk J, Lips P, Teule GJ (1994) Weight-bearing activity during youth is a more important factor for peak bone mass than calcium intake. J Bone Miner Res 9:1089–1096PubMedCrossRefGoogle Scholar
  17. 17.
    Gracia-Marco L, Vicente-Rodriguez G, Casajus JA, Molnar D, Castillo MJ, Moreno LA (2011) Effect of fitness and physical activity on bone mass in adolescents: the HELENA study. Eur J Appl Physiol 111:2671–2680PubMedCrossRefGoogle Scholar
  18. 18.
    Gracia-Marco L, Moreno LA, Ortega FB, Leon F, Sioen I, Kafatos A, Martinez-Gomez D, Widhalm K, Castillo MJ, Vicente-Rodriguez G (2011) Levels of physical activity that predict optimal bone mass in adolescents. The HELENA study. Am J Prev Med 40:599–607PubMedCrossRefGoogle Scholar
  19. 19.
    Kriemler S, Zahner L, Puder JJ, Braun-Fahrländer C, Schindler C, Farpour-Lambert NJ, Kränzlin M, Rizzoli R (2008) Weight-bearing bones are more sensitive to physical exercise in boys than in girls during pre- and early puberty: a cross-sectional study. Osteoporos Int 19:1749–1758PubMedCrossRefGoogle Scholar
  20. 20.
    Tobias JH, Steer C, Mattocks CG, Riddoch C, Ness A (2007) Habitual levels of physical activity influences on bone mass in 11-year old children from the United Kingdom: findings from a large population-based cohort. J Bone Miner Res 22:101–109PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Tanner J (1962) Growth at adolescence, 2nd edn. Blackwell, OxfordGoogle Scholar
  22. 22.
    Duke PM, Litt IF, Gross RT (1980) Adolescents’ self-assessment of sexual maturation. Pediatrics 66:918–920PubMedGoogle Scholar
  23. 23.
    Lätt E, Jürimäe J, Haljaste K, Cicchella A, Purge P, Jürimäe T (2009) Longitudinal development of physical and performance parameters during biological maturation of young male swimmers. Percept Motor Skills 108:297–307Google Scholar
  24. 24.
    Pomerants T, Tillmann V, Karelson K, Jürimäe J, Jürimäe T (2006) Ghrelin response to acute aerobic exercise in boys at different stages of puberty. Horm Metab Res 38:752–757PubMedCrossRefGoogle Scholar
  25. 25.
    Lätt E, Mäestu J, Rääsk T, Purge P, Rubin DA, Saar M, Jürimäe J, Jürimäe T (2012) Association of physical activity to cardiovascular fitness and fatness in 12–13 year old boys of different weight status. J Public Health. doi: 10.1007/s10389-012-0549-0 Google Scholar
  26. 26.
    Freedson P, Pober D, Janz KF (2005) Calibration of accelerometer output for children. Med Sci Sports Exerc 37:S523–S530PubMedCrossRefGoogle Scholar
  27. 27.
    Ortega FB, Konstabel K, Pasquali E, Ruiz JR, Hurtig-Wennlöf, Mäestu J, Löf M, Harro J, Belloco R, Labajen I, Veidebaum T, Sjöström M (2013) Objectiely measured physical activity and sedentary time during childhood, adolescence and young adulthood: a cohort study. Plos One 8, doi: 10.1371/journal.pone.0060871
  28. 28.
    Ruiz JR, Rizzo NS, Hurtig-Wennlof A, Ortega FB, Warnberg J, Sjomstrom M (2006) Relations of total physical activity and intensity to fitness and fatness in children: the European Youth Heart Study. Am J Clin Nutr 84:299–303PubMedGoogle Scholar
  29. 29.
    Lanyon LE (1987) Functional strain in bone tissue as an objective, and controlling stimulus for adaptive bone remodelling. J Biomech 20:1083–1093PubMedCrossRefGoogle Scholar
  30. 30.
    Ivuškans A, Mäestu J, Jürimäe T, Lätt E, Purge P, Saar M, Masalu K, Jürimäe J (2013) The role of physical activity in bone health in peripubertal boys. Pediatrics Int 21:231–239Google Scholar
  31. 31.
    Vicente-Rodríguez G, Urzanqui A, Mesana MI, Ortega FB, Ruiz JR, Ezquerra J, Casajús JA, Blay G, Blay VA, Gonzalez-Gross M, Moreno LA, AVENA-Zaragoza Study Group (2008) Physical fitness effect on bone mass is mediated by the independent association between lean mass and bone mass through adolescence: a cross sectional study. J Bone Miner Metab 26:288–294Google Scholar
  32. 32.
    Nilsson M, Ohlsson C, Sundh D, Mellstrom D, Lorentzon M (2010) Association of physical activity with trabecular microstructure and cortical bone at distal tibia and radius in young adult men. J Clin Endocrinol Metab 95:2917–2926PubMedCrossRefGoogle Scholar
  33. 33.
    Caspersen CJ, Pererira MA, Curran KM (2000) Changes in physical activity patterns in the United States, by sex and cross.sectional age. Med Sci Sports Exerc 32:1601–1609PubMedCrossRefGoogle Scholar
  34. 34.
    US DHHS (2008) Key guidelines for children and adolescents. http://www.health.gov/PAGuidelines/.
  35. 35.
    Ekelund U, Luan J, Sherar LB, Esliger DW, Griew P, Cooper A (2012) Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA 307:704–712PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Iuliano-Burns S, Stone J, Hopper JL, Seeman E (2005) Diet and exercise during growth have site-specific skeletal effects: a co-twin control study. Osteoporos Int 16:1225–1232PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer Japan 2014

Authors and Affiliations

  • Artūrs Ivuškāns
    • 1
  • Jarek Mäestu
    • 1
    Email author
  • Toivo Jürimäe
    • 1
  • Evelin Lätt
    • 1
  • Priit Purge
    • 1
  • Meeli Saar
    • 1
  • Katre Maasalu
    • 2
  • Jaak Jürimäe
    • 1
  1. 1.Faculty of Exercise and Sport Sciences, Centre of Behavioural and Health SciencesUniversity of TartuTartuEstonia
  2. 2.Faculty of MedicineUniversity of TartuTartuEstonia

Personalised recommendations