Journal of Bone and Mineral Metabolism

, Volume 32, Issue 6, pp 645–652 | Cite as

ONO-5334, a cathepsin K inhibitor, improves bone strength by preferentially increasing cortical bone mass in ovariectomized rats

  • Yasuo Ochi
  • Hiroyuki Yamada
  • Hiroshi MoriEmail author
  • Naoki Kawada
  • Ryoji Kayasuga
  • Yasutomo Nakanishi
  • Makoto Tanaka
  • Akira Imagawa
  • Kazuyuki Ohmoto
  • Kazuhito Kawabata
Original Article


This study compared the effects of ONO-5334, a cathepsin K inhibitor, with those of alendronate on bone mass and strength in ovariectomized rats. Ovariectomy resulted in significant elevation in urinary deoxypyridinoline and plasma C-terminal cross-linking telopeptide of type I collagen (CTX) 8 weeks after surgery. Peripheral quantitative computed tomography analysis showed that total, trabecular, and cortical bone mineral content (BMC) decreased in the proximal tibia, which was paralleled with a significant decline in bone strength. Treatment with ONO-5334 (0.12, 0.6, 3 or 15 mg/kg) once daily for 8 weeks dose-dependently restored the decrease in total BMC and bone mineral density (BMD) in the proximal tibia and suppressed urinary deoxypyridinoline and plasma CTX levels. Alendronate (1 mg/kg, once daily) also fully restored these bone mass parameters. Separate analysis of trabecular and cortical bones, however, showed that ONO-5334 only partially restored trabecular BMD and BMC at 15 mg/kg, whereas alendronate fully restored these parameters. On the other hand, ONO-5334 increased both cortical BMD and BMC with an effect more potent than that of alendronate. Bone geometric analysis indicated that ONO-5334 at 15 mg/kg decreased endosteal circumference without affecting periosteal circumference, resulting in marked increase in cortical thickness. Interestingly, the effects of ONO-5334 on bone strength parameters were more prominent than those of alendronate, although the two test compounds had a similar effect on total BMC. Taken together, our results indicate that ONO-5334 has pharmacological characteristics different from those of alendronate and may offer a unique therapy for patients with osteoporosis.


Cathepsin K ONO-5334 Cortical bone Bone strength Ovariectomized rat 



We thank Yoko Kishida for technical support in animal care and assessments. We also thank Akiko Kunishige, Satoshi Nishikawa, Yasuaki Hashimoto, Masafumi Sugitani, and Katsuya Kishikawa (Ono Pharmaceutical Co., Ltd.) for their helpful comments and discussions on this manuscript.

Conflict of interest

All authors have no conflicts of interest.


  1. 1.
    Yasuda Y, Kaleta J, Brömme D (2005) The role of cathepsins in osteoporosis and arthritis: rationale for the design of new therapeutics. Adv Drug Deliv Rev 57:973–993PubMedCrossRefGoogle Scholar
  2. 2.
    Inaoka T, Bilbe G, Ishibashi O, Tezuka K, Kumegawa M, Kokubo T (1995) Molecular cloning of human cDNA for cathepsin K: novel cysteine proteinase predominantly expressed in bone. Biochem Biophys Res Commun 206:89–96PubMedCrossRefGoogle Scholar
  3. 3.
    Drake FH, Dodds RA, James IE, Connor JR, Debouck C, Richardson S, Lee-Rykaczewski E, Coleman L, Rieman D, Barthlow R, Hastings G, Gowen M (1996) Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J Biol Chem 271:12511–12516PubMedCrossRefGoogle Scholar
  4. 4.
    Garnero P, Borel O, Byrjalsen I, Ferreras M, Drake FH, McQueney MS, Foged NT, Delmas PD, Delaissé JM (1998) The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J Biol Chem 273:32347–32352PubMedCrossRefGoogle Scholar
  5. 5.
    Gelb BD, Shi GP, Chapman HA, Desnick RJ (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273:1236–1238PubMedCrossRefGoogle Scholar
  6. 6.
    Johnson MR, Polymeropoulos MH, Vos HL, Ortiz de Luna RI, Francomano CA (1996) A nonsense mutation in the cathepsin K gene observed in a family with pycnodysostosis. Genome Res 6:1050–1055PubMedCrossRefGoogle Scholar
  7. 7.
    Gowen M, Lazner F, Dodds R, Kapadia R, Feild J, Tavaria M, Bertoncello I, Drake F, Zavarselk S, Tellis I, Hertzog P, Debouck C, Kola I (1999) Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res 14:1654–1663PubMedCrossRefGoogle Scholar
  8. 8.
    Li CY, Jepsen KJ, Majeska RJ, Zhang J, Ni R, Gelb BD, Schaffler MB (2006) Mice lacking cathepsin K maintain bone remodeling but develop bone fragility despite high bone mass. J Bone Miner Res 21:865–875PubMedCrossRefGoogle Scholar
  9. 9.
    Pennypacker B, Shea M, Liu Q, Masarachia P, Saftig P, Rodan S, Rodan G, Kimmel D (2009) Bone density, strength, and formation in adult cathepsin K (−/−) mice. Bone 44:199–207PubMedCrossRefGoogle Scholar
  10. 10.
    Karsdal MA, Martin TJ, Bollerslev J, Christiansen C, Henriksen K (2007) Are nonresorbing osteoclasts sources of bone anabolic activity? J Bone Miner Res 22:487–494PubMedCrossRefGoogle Scholar
  11. 11.
    Duong le T (2012) Therapeutic inhibition of cathepsin K-reducing bone resorption while maintaining bone formation. BoneKEy Reports 1: article number 67. doi: 10.1038/bonekey.2012.67
  12. 12.
    Azuma Y, Oue Y, Kanatani H, Ohta T, Kiyoki M, Komoriya K (1998) Effects of continuous alendronate treatment on bone mass and mechanical properties in ovariectomized rats: comparison with pamidronate and etidronate in growing rats. J Pharmacol Exp Ther 286:128–135PubMedGoogle Scholar
  13. 13.
    Gasser JA, Ingold P, Venturiere A, Shen V, Green JR (2008) Long-term protective effects of zoledronic acid on cancellous and cortical bone in the ovariectomized rat. J Bone Miner Res 23:544–551PubMedCrossRefGoogle Scholar
  14. 14.
    Tanaka M, Mori H, Kayasuga R, Ochi Y, Kawada N, Yamada H, Kishikawa K (2008) Long-term minodronic acid (ONO-5920/YM529) treatment suppresses increased bone turnover, plus prevents reduction in bone mass and bone strength in ovariectomized rats with established osteopenia. Bone 43:840–848PubMedCrossRefGoogle Scholar
  15. 15.
    Sato M, Bryant HU, Iversen P, Helterbrand J, Smietana F, Bemis K, Higgs R, Turner CH, Owan I, Takano Y, Burr DB (1996) Advantages of raloxifene over alendronate or estrogen on nonreproductive and reproductive tissues in the long-term dosing of ovariectomized rats. J Pharmacol Exp Ther 279:298–305PubMedGoogle Scholar
  16. 16.
    Sato M, Zeng GQ, Turner CH (1997) Biosynthetic human parathyroid hormone (1–34) effects on bone quality in aged ovariectomized rats. Endocrinology 138:4330–4337PubMedGoogle Scholar
  17. 17.
    Stroup GB, Lark MW, Veber DF, Bhattacharyya A, Blake S, Dare LC, Erhard KF, Hoffman SJ, James IE, Marquis RW, Ru Y, Vasko-Moser JA, Smith BR, Tomaszek T, Gowen M (2001) Potent and selective inhibition of human cathepsin K leads to inhibition of bone resorption in vivo in a nonhuman primate. J Bone Miner Res 16:1739–1746PubMedCrossRefGoogle Scholar
  18. 18.
    Lark MW, Stroup GB, James IE, Dodds RA, Hwang SM, Blake SM, Lechowska BA, Hoffman SJ, Smith BR, Kapadia R, Liang X, Erhard K, Ru Y, Dong X, Marquis RW, Veber D, Gowen M (2002) A potent small molecule, nonpeptide inhibitor of cathepsin K (SB 331750) prevents bone matrix resorption in the ovariectomized rat. Bone 30:746–753PubMedCrossRefGoogle Scholar
  19. 19.
    Kim MK, Kim HD, Park JH, Lim JI, Yang JS, Kwak WY, Sung SY, Kim HJ, Kim SH, Lee CH, Shim JY, Bae MH, Shin YA, Huh Y, Han TD, Chong W, Choi H, Ahn BN, Yang SO, Son MH (2006) An orally active cathepsin K inhibitor, furan-2-carboxylic acid, 1-{1-[4-fluoro-2-(2-oxo-pyrrolidin-1-yl)-phenyl]-3-oxo-piperidin-4-ylcarbamoyl}-cyclohexyl)-amide (OST-4077), inhibits osteoclast activity in vitro and bone loss in ovariectomized rats. J Pharmacol Exp Ther 318:555–562PubMedCrossRefGoogle Scholar
  20. 20.
    Ochi Y, Yamada H, Mori H, Nakanishi Y, Nishikawa S, Kayasuga R, Kawada N, Kunishige A, Hashimoto Y, Tanaka M, Sugitani M, Kawabata K (2011) Effects of ONO-5334, a novel orally-active inhibitor of cathepsin K, on bone metabolism. Bone 49:1351–1356PubMedCrossRefGoogle Scholar
  21. 21.
    Hogan HA, Ruhmann SP, Sampson HW (2000) The mechanical properties of cancellous bone in the proximal tibia of ovariectomized rats. J Bone Miner Res 15:284–292PubMedCrossRefGoogle Scholar
  22. 22.
    Kimoto A, Tanaka M, Nozaki K, Mori M, Fukushima S, Mori H, Shiroya T, Nakamura T (2013) Intermittent minodronic acid treatment with sufficient bone resorption inhibition prevents reduction in bone mass and strength in ovariectomized rats with established osteopenia comparable with daily treatment. Bone 55:189–197PubMedCrossRefGoogle Scholar
  23. 23.
    Nishi Y, Atley L, Eyre DE, Edelson JG, Superti-Furga A, Yasuda T, Desnick RJ, Gelb BD (1999) Determination of bone markers in pycnodysostosis: effects of cathepsin K deficiency on bone matrix degradation. J Bone Miner Res 14:1902–1908PubMedCrossRefGoogle Scholar
  24. 24.
    Azuma Y, Sato H, Oue Y, Okabe K, Ohta T, Tsuchimoto M, Kiyoki M (1995) Alendronate distributed on bone surfaces inhibits osteoclastic bone resorption in vitro and in experimental hypercalcemia models. Bone 16:235–245PubMedCrossRefGoogle Scholar
  25. 25.
    Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD, Mundy GR, Boyce BF (1995) Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 10:1478–1487PubMedCrossRefGoogle Scholar
  26. 26.
    Reszka AA, Halasy-Nagy JM, Masarachia PJ, Rodan GA (1999) Bisphosphonates act directly on the osteoclast to induce caspase cleavage of mst1 kinase during apoptosis. A link between inhibition of the mevalonate pathway and regulation of an apoptosis-promoting kinase. J Biol Chem 274:34967–34973PubMedCrossRefGoogle Scholar
  27. 27.
    Jerome C, Missbach M, Gamse R (2011) Balicatib, a cathepsin K inhibitor, stimulates periosteal bone formation in monkeys. Osteoporos Int 22:3001–3011PubMedCrossRefGoogle Scholar
  28. 28.
    Cusick T, Chen CM, Pennypacker BL, Pickarski M, Kimmel DB, Scott BB, le Duong T (2012) Odanacatib treatment increases hip bone mass and cortical thickness by preserving endocortical bone formation and stimulating periosteal bone formation in the ovariectomized adult rhesus monkey. J Bone Miner Res 27:524–537PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer Japan 2013

Authors and Affiliations

  • Yasuo Ochi
    • 1
  • Hiroyuki Yamada
    • 1
  • Hiroshi Mori
    • 1
    Email author
  • Naoki Kawada
    • 1
  • Ryoji Kayasuga
    • 1
  • Yasutomo Nakanishi
    • 1
  • Makoto Tanaka
    • 1
  • Akira Imagawa
    • 1
  • Kazuyuki Ohmoto
    • 1
  • Kazuhito Kawabata
    • 1
  1. 1.Minase Research InstituteOno Pharmaceutical Co., Ltd.OsakaJapan

Personalised recommendations