Journal of Bone and Mineral Metabolism

, Volume 32, Issue 6, pp 616–626 | Cite as

Fructus Ligustri Lucidi (FLL) ethanol extract increases bone mineral density and improves bone properties in growing female rats

  • Ying Lyu
  • Xin Feng
  • Pengling Zhao
  • Zhenghao Wu
  • Hao Xu
  • Yuehui Fang
  • Yangfeng Hou
  • Liya Denney
  • Yajun XuEmail author
  • Haotian FengEmail author
Original Article


Osteoporosis is a chronic disease affecting millions of people worldwide. It is generally accepted that acquisition of a high peak bone mass (PBM) early in life can reduce the risk of osteoporosis later in life. The aims of this study were to investigate the effects of Fructus Ligustri Lucidi (FLL) ethanol extract on bone mineral density and its mechanical properties in growing female rats and to explore the underlying mechanisms. The rats were given different doses of FLL extract mixed with AIN-93G formula (0.40, 0.65 and 0.90 %), and a group given AIN-93G diet treatment only was used as control. The intervention lasted for 16 weeks until the animals were about 5 months old, the time when the animals almost reach their PBM. Our results showed that FLL treatment increased bone mineral density and improved bone mechanical properties in the growing female rats in a dose-dependent manner. In addition, FLL treatment significantly decreased the serum bone-resorbing marker, CTX-I, while significantly increasing serum 25(OH)D3 and thereby increasing Ca absorption and Ca retention. Intriguingly, both in vivo and in vitro results demonstrated that FLL treatment could reduce the RANKL/OPG ratio. In conclusion, FLL ethanol extract exerted beneficial effects on peak bone mass acquisition and the improvement of bone mechanical properties by favoring Ca metabolism and decreasing the RANKL/OPG ratio.


Fructus Ligustri Lucidi Calcium balance Bone mineral density Bone properties RANKL/OPG 


Conflict of interest

All authors have no conflicts of interest.


  1. 1.
    WHO (2003) Prevention and management of osteoporosis. World Health Organ Tech Rep Ser 921:1–164Google Scholar
  2. 2.
    NIH (2001) NIH consensus development panel on osteoporosis prevention, diagnosis, and therapy, March 7–29, 2000: highlights of the conference. South Med J 94:569–573Google Scholar
  3. 3.
    Brunader R, Shelton DK (2002) Radiologic bone assessment in the evaluation of osteoporosis. Am Fam Physician 65:1357–1364PubMedGoogle Scholar
  4. 4.
    Xue K, Ren-hui L, Xiu-juan W (2012) Advances on studies of anti-osteoporosis applications and mechanisms by Herba Epimedii and Fructus ligustri lucidi. Chin J Exp Tradit Med Formulae 18:331–334Google Scholar
  5. 5.
    Zhang Y, Lai WP, Leung PC, Wu CF, Yao XS, Wong MS (2006) Effects of Fructus ligustri lucidi extract on bone turnover and calcium balance in ovariectomized rats. Biol Pharm Bull 29:291–296PubMedCrossRefGoogle Scholar
  6. 6.
    Zhang Y, Dong XL, Leung PC, Che CT, Wong MS (2008) Fructus ligustri lucidi extract improves calcium balance and modulates the calciotropic hormone level and vitamin D-dependent gene expression in aged ovariectomized rats. Menopause 15:558–565PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang Y, Leung PC, Che CT, Chow HK, Wu CF, Wong MS (2008) Improvement of bone properties and enhancement of mineralization by ethanol extract of Fructus ligustri lucidi. Br J Nutr 99:494–502PubMedGoogle Scholar
  8. 8.
    Zhu K, Prince RL (2012) Calcium and bone. Clin Biochem 45:936–942PubMedCrossRefGoogle Scholar
  9. 9.
    Lane NE (2006) Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol 194:S3–S11PubMedCrossRefGoogle Scholar
  10. 10.
    Peterson CA, Eurell JA, Erdman JJ (1995) Alterations in calcium intake on peak bone mass in the female rat. J Bone Miner Res 10:81–95PubMedCrossRefGoogle Scholar
  11. 11.
    Sengupta S, Arshad M, Sharma S, Dubey M, Singh MM (2005) Attainment of peak bone mass and bone turnover rate in relation to estrous cycle, pregnancy and lactation in colony-bred Sprague–Dawley rats: suitability for studies on pathophysiology of bone and therapeutic measures for its management. J Steroid Biochem Mol Biol 94:421–429PubMedCrossRefGoogle Scholar
  12. 12.
    Li G, Zhang XA, Zhang JF, Chan CY, Yew DT, He ML, Lin MC, Leung PC, Kung HF (2010) Ethanol extract of Fructus ligustri lucidi promotes osteogenesis of mesenchymal stem cells. Phytother Res 24:571–576PubMedGoogle Scholar
  13. 13.
    Christakos S, Dhawan P, Porta A, Mady LJ, Seth T (2011) Vitamin D and intestinal calcium absorption. Mol Cell Endocrinol 347:25–29PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Bronner F (2009) Recent developments in intestinal calcium absorption. Nutr Rev 67:109–113PubMedCrossRefGoogle Scholar
  15. 15.
    Fleet JC, Schoch RD (2010) Molecular mechanisms for regulation of intestinal calcium absorption by vitamin D and other factors. Crit Rev Clin Lab Sci 47:181–195PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Miller WL, Portale AA (2000) Vitamin D 1 alpha-hydroxylase. Trends Endocrinol Metab 11:315–319PubMedCrossRefGoogle Scholar
  17. 17.
    Bikle DD (2012) Vitamin D and bone. Curr Osteoporos Rep 10:151–159PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Cole JH, van der Meulen MC (2011) Whole bone mechanics and bone quality. Clin Orthop Relat Res 469:2139–2149PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Friedman AW (2006) Important determinants of bone strength: beyond bone mineral density. J Clin Rheumatol 12:70–77PubMedCrossRefGoogle Scholar
  20. 20.
    van der Meulen MC, Boskey AL (2012) Atypical subtrochanteric femoral shaft fractures: role for mechanics and bone quality. Arthritis Res Ther 14:220PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Chen H, Zhou X, Fujita H, Onozuka M, Kubo KY (2013) Age-related changes in trabecular and cortical bone microstructure. Int J Endocrinol 2013:213234PubMedCentralPubMedGoogle Scholar
  22. 22.
    Srivastava K, Khan K, Tyagi AM, Khan MP, Yadav DK, Trivedi R, Maurya R, Singh D, Chattopadhyay N (2013) Greater skeletal gains in ovary intact rats at maturity are achieved by Supplementing a standardized extract of Butea monosperma stem bark that confers better bone conserving effect following ovariectomy and concurrent treatment withdrawal. Evid Based Complement Alternat Med 2013:519387PubMedCentralPubMedGoogle Scholar
  23. 23.
    Perez-Sayans M, Somoza-Martin JM, Barros-Angueira F, Rey JM, Garcia-Garcia A (2010) RANK/RANKL/OPG role in distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:679–686PubMedCrossRefGoogle Scholar
  24. 24.
    Bai YD, Yang FS, Xuan K, Bai YX, Wu BL (2008) Inhibition of RANK/RANKL signal transduction pathway: a promising approach for osteoporosis treatment. Med Hypotheses 71:256–258PubMedCrossRefGoogle Scholar
  25. 25.
    Blair JM, Zheng Y, Dunstan CR (2007) RANK ligand. Int J Biochem Cell Biol 39:1077–1081PubMedCrossRefGoogle Scholar
  26. 26.
    Boyce BF, Xing L (2007) Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 9:S1PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Hofbauer LC, Schoppet M (2004) Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA 292:490–495PubMedCrossRefGoogle Scholar
  28. 28.
    Lee YS, Choi EM (2011) Costunolide stimulates the function of osteoblastic MC3T3-E1 cells. Int Immunopharmacol 11:712–718PubMedCrossRefGoogle Scholar
  29. 29.
    Li F, Yang Y, Zhu P, Chen W, Qi D, Shi X, Zhang C, Yang Z, Li P (2012) Echinacoside promotes bone regeneration by increasing OPG/RANKL ratio in MC3T3-E1 cells. Fitoterapia 83:1443–1450PubMedCrossRefGoogle Scholar
  30. 30.
    Vasikaran S, Eastell R, Bruyere O, Foldes AJ, Garnero P, Griesmacher A, McClung M, Morris HA, Silverman S, Trenti T, Wahl DA, Cooper C, Kanis JA (2011) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 22:391–420PubMedCrossRefGoogle Scholar
  31. 31.
    Malaval L, Modrowski D, Gupta AK, Aubin JE (1994) Cellular expression of bone-related proteins during in vitro osteogenesis in rat bone marrow stromal cell cultures. J Cell Physiol 158:555–572PubMedCrossRefGoogle Scholar
  32. 32.
    Wang D, Christensen K, Chawla K, Xiao G, Krebsbach PH, Franceschi RT (1999) Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J Bone Miner Res 14:893–903PubMedCrossRefGoogle Scholar
  33. 33.
    Li JF, Chen SJ, Zhao Y, Li JX (2009) Glycoside modification of oleanolic acid derivatives as a novel class of anti-osteoclast formation agents. Carbohydr Res 344:599–605PubMedCrossRefGoogle Scholar
  34. 34.
    Li JF, Zhao Y, Cai MM, Li XF, Li JX (2009) Synthesis and evaluation of a novel series of heterocyclic oleanolic acid derivatives with anti-osteoclast formation activity. Eur J Med Chem 44:2796–2806PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang Y, Li JX, Zhao J, Wang SZ, Pan Y, Tanaka K, Kadota S (2005) Synthesis and activity of oleanolic acid derivatives, a novel class of inhibitors of osteoclast formation. Bioorg Med Chem Lett 15:1629–1632PubMedCrossRefGoogle Scholar
  36. 36.
    Xu Y, Han X, Li Y (2010) Effect of marine collagen peptides on long bone development in growing rats. J Sci Food Agric 90:1485–1491PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer Japan 2013

Authors and Affiliations

  • Ying Lyu
    • 1
  • Xin Feng
    • 1
  • Pengling Zhao
    • 2
  • Zhenghao Wu
    • 1
  • Hao Xu
    • 1
  • Yuehui Fang
    • 1
  • Yangfeng Hou
    • 2
  • Liya Denney
    • 3
  • Yajun Xu
    • 1
    • 4
    Email author
  • Haotian Feng
    • 2
    Email author
  1. 1.Department of Nutrition and Food Hygiene, School of Public HealthPeking UniversityBeijingChina
  2. 2.Nestlé R&D Centre (China)BeijingChina
  3. 3.Nestlé Research CentreLausanne 26Switzerland
  4. 4.Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food SafetyBeijingChina

Personalised recommendations