Journal of Bone and Mineral Metabolism

, Volume 31, Issue 5, pp 496–506 | Cite as

Anti-cancer IAP antagonists promote bone metastasis: a cautionary tale

  • Chang YangEmail author
  • Deborah Veis Novack
Invited Review


The bone microenvironment is complex, containing bone-forming osteoblasts, bone-resorbing osteoclasts, bone-maintaining osteocytes, hematopoietic lineage cells, as well as blood vessels, nerves, and stromal cells. Release of embedded growth factors from the bone matrix via osteoclast resorption has been shown to participate in the alteration of bone microenvironment to facilitate tumor metastasis to this organ. Many types of malignancies including solid tumors and leukemias are associated with elevated levels of inhibitor of apoptosis (IAP) proteins, and IAP antagonists represent an important emerging class of anti-cancer agents. IAPs exert anti-apoptotic roles by inhibiting caspases and upregulating pro-survival proteins, at least in part by activating classical NF-κB signaling. In addition, IAPs act as negative regulators in the alternative NF-κB pathway, so that IAP antagonists stimulate this pathway. The role of the classical NF-κB pathway in IAP antagonist-induced apoptosis has been extensively studied, whereas much less attention has been paid to the role of these agents in the alternative pathway. Thus far, several IAP antagonists have been tested in preclinical and early stage clinical trials, and have shown promise in sensitizing tumor cells to apoptosis without significant side effects. However, recent preclinical evidence suggests an increased risk of bone metastasis caused by IAP antagonists, along with potential for promoting osteoporosis. In this review, the connection between IAP antagonists, the alternative NF-κB pathway, osteoclasts, and bone metastasis are discussed. In light of these effects of IAP antagonists on the bone microenvironment, more attention should be paid to this and other host tissues as these drugs are developed further.


Bone metastasis IAP antagonist Osteoclast NF-κB NIK 


Conflict of interest

All authors have no conflicts of interest.


  1. 1.
    Liu S, Gupta A, Quarles LD (2007) Emerging role of fibroblast growth factor 23 in a bone-kidney axis regulating systemic phosphate homeostasis and extracellular matrix mineralization. Curr Opin Nephrol Hypertens 16:329–335PubMedCrossRefGoogle Scholar
  2. 2.
    Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, Ducy P, Karsenty G (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142:296–308PubMedCrossRefGoogle Scholar
  3. 3.
    Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith CE, Hermo L, Suarez S, Roth BL, Ducy P, Karsenty G (2011) Endocrine regulation of male fertility by the skeleton. Cell 144:796–809PubMedCrossRefGoogle Scholar
  4. 4.
    Chitteti BR, Cheng YH, Streicher DA, Rodriguez–Rodriguez S, Carlesso N, Srour EF, Kacena MA (2010) Osteoblast lineage cells expressing high levels of Runx2 enhance hematopoietic progenitor cell proliferation and function. J Cell Biochem 111:284–294PubMedCrossRefGoogle Scholar
  5. 5.
    Takayanagi H (2012) New developments in osteoimmunology. Nat Rev Rheumatol 8:684–689PubMedCrossRefGoogle Scholar
  6. 6.
    Sun D, Martinez CO, Ochoa O, Ruiz-Willhite L, Bonilla JR, Centonze VE, Waite LL, Michalek JE, McManus LM, Shireman PK (2009) Bone marrow-derived cell regulation of skeletal muscle regeneration. FASEB J 23:382–395PubMedCrossRefGoogle Scholar
  7. 7.
    Zhao C, Irie N, Takada Y, Shimoda K, Miyamoto T, Nishiwaki T, Suda T, Matsuo K (2006) Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab 4:111–121PubMedCrossRefGoogle Scholar
  8. 8.
    Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, Zhao L, Nagy TR, Peng X, Hu J, Feng X, Van Hul W, Wan M, Cao X (2009) TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 15:757–765PubMedCrossRefGoogle Scholar
  9. 9.
    Vaira S, Alhawagri M, Anwisye I, Kitaura H, Faccio R, Novack DV (2008) RelA/p65 promotes osteoclast differentiation by blocking a RANKL-induced apoptotic JNK pathway in mice. J Clin Invest 118:2088–2097PubMedGoogle Scholar
  10. 10.
    Vaira S, Johnson T, Hirbe AC, Alhawagri M, Anwisye I, Sammut B, O’Neal J, Zou W, Weilbaecher KN, Faccio R, Novack DV (2008) RelB is the NF-kappaB subunit downstream of NIK responsible for osteoclast differentiation. Proc Natl Acad Sci USA 105:3897–3902PubMedCrossRefGoogle Scholar
  11. 11.
    Yang C, McCoy K, Davis JL, Schmidt-Supprian M, Sasaki Y, Faccio R, Novack DV (2010) NIK stabilization in osteoclasts results in osteoporosis and enhanced inflammatory osteolysis. PLoS ONE 5:e15383PubMedCrossRefGoogle Scholar
  12. 12.
    Seo Y, Fukushima H, Maruyama T, Kuroishi KN, Osawa K, Nagano K, Aoki K, Weih F, Doi T, Zhang M, Ohya K, Katagiri T, Hosokawa R, Jimi E (2012) Accumulation of p100, a precursor of NF-kappaB2, enhances osteoblastic differentiation in vitro and bone formation in vivo in aly/aly mice. Mol Endocrinol 26:414–422PubMedCrossRefGoogle Scholar
  13. 13.
    Soysa NS, Alles N, Weih D, Lovas A, Mian AH, Shimokawa H, Yasuda H, Weih F, Jimi E, Ohya K, Aoki K (2010) The pivotal role of the alternative NF-kappaB pathway in maintenance of basal bone homeostasis and osteoclastogenesis. J Bone Miner Res 25:809–818PubMedGoogle Scholar
  14. 14.
    Vucic D, Fairbrother WJ (2007) The inhibitor of apoptosis proteins as therapeutic targets in cancer. Clin Cancer Res 13:5995–6000PubMedCrossRefGoogle Scholar
  15. 15.
    Fulda S, Vucic D (2012) Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov 11:109–124PubMedCrossRefGoogle Scholar
  16. 16.
    Faccio R (2011) Immune regulation of the tumor/bone vicious cycle. Ann N Y Acad Sci 1237:71–78PubMedCrossRefGoogle Scholar
  17. 17.
    Yang C, Davis JL, Zeng R, Vora P, Su X, Collins LI, Vangveravong S, Mach RH, Piwnica-Worms D, Weilbaecher KN, Faccio R, Novack DV (2013) Antagonism of inhibitor of apoptosis proteins increases bone metastasis via unexpected osteoclast activation. Cancer Discov 3:212–223PubMedCrossRefGoogle Scholar
  18. 18.
    Gerondakis S, Banerjee A, Grigoriadis G, Vasanthakumar A, Gugasyan R, Sidwell T, Grumont RJ (2012) NF-kappaB subunit specificity in hemopoiesis. Immunol Rev 246:272–285PubMedCrossRefGoogle Scholar
  19. 19.
    Novack DV, Yin L, Hagen-Stapleton A, Schreiber RD, Goeddel DV, Ross FP, Teitelbaum SL (2003) The IkappaB function of NF-kappaB2 p100 controls stimulated osteoclastogenesis. J Exp Med 198:771–781PubMedCrossRefGoogle Scholar
  20. 20.
    Otero JE, Dai S, Alhawagri MA, Darwech I, Abu-Amer Y (2010) IKKbeta activation is sufficient for RANK-independent osteoclast differentiation and osteolysis. J Bone Miner Res 25:1282–1294PubMedCrossRefGoogle Scholar
  21. 21.
    Zarnegar B, Yamazaki S, He JQ, Cheng G (2008) Control of canonical NF-kappaB activation through the NIK-IKK complex pathway. Proc Natl Acad Sci USA 105:3503–3508PubMedCrossRefGoogle Scholar
  22. 22.
    Li Y, Li A, Strait K, Zhang H, Nanes MS, Weitzmann MN (2007) Endogenous TNFalpha lowers maximum peak bone mass and inhibits osteoblastic Smad activation through NF-kappaB. J Bone Miner Res 22:646–655PubMedCrossRefGoogle Scholar
  23. 23.
    Yamazaki M, Fukushima H, Shin M, Katagiri T, Doi T, Takahashi T, Jimi E (2009) Tumor necrosis factor a represses bone morphogenetic protein (BMP) signaling by interfering with the DNA binding of Smads through the activation of NF-kB. J Biol Chem 284:35987–35995PubMedCrossRefGoogle Scholar
  24. 24.
    Novack DV (2011) Role of NF-kappaB in the skeleton. Cell Res 21:169–182PubMedCrossRefGoogle Scholar
  25. 25.
    Wu S, Fadoju D, Rezvani G, De Luca F (2008) Stimulatory effects of insulin-like growth factor-I on growth plate chondrogenesis are mediated by nuclear factor-kappaB p65. J Biol Chem 283:34037–34044PubMedCrossRefGoogle Scholar
  26. 26.
    Marcu KB, Otero M, Olivotto E, Borzi RM, Goldring MB (2010) NF-kappaB signaling: multiple angles to target OA. Curr Drug Targets 11:599–613PubMedCrossRefGoogle Scholar
  27. 27.
    Zarnegar BJ, Wang Y, Mahoney DJ, Dempsey PW, Cheung HH, He J, Shiba T, Yang X, Yeh WC, Mak TW, Korneluk RG, Cheng G (2008) Noncanonical NF-kB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 9:1371–1378PubMedCrossRefGoogle Scholar
  28. 28.
    Vallabhapurapu S, Matsuzawa A, Zhang W, Tseng PH, Keats JJ, Wang H, Vignali DA, Bergsagel PL, Karin M (2008) Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kB signaling. Nat Immunol 9:1364–1370PubMedCrossRefGoogle Scholar
  29. 29.
    Allen IC, Wilson JE, Schneider M, Lich JD, Roberts RA, Arthur JC, Woodford RM, Davis BK, Uronis JM, Herfarth HH, Jobin C, Rogers AB, Ting JP (2012) NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-kappaB signaling. Immunity 36:742–754PubMedCrossRefGoogle Scholar
  30. 30.
    Hu H, Brittain GC, Chang JH, Puebla-Osorio N, Jin J, Zal A, Xiao Y, Cheng X, Chang M, Fu YX, Zal T, Zhu C, Sun SC (2013) OTUD7B controls non-canonical NF-kappaB activation through deubiquitination of TRAF3. Nature 494:371–374PubMedCrossRefGoogle Scholar
  31. 31.
    Yao Z, Xing L, Boyce BF (2009) NF-kappaB p100 limits TNF-induced bone resorption in mice by a TRAF3-dependent mechanism. J Clin Invest 119:3024–3034PubMedCrossRefGoogle Scholar
  32. 32.
    LaCasse EC, Mahoney DJ, Cheung HH, Plenchette S, Baird S, Korneluk RG (2008) IAP-targeted therapies for cancer. Oncogene 27:6252–6275PubMedCrossRefGoogle Scholar
  33. 33.
    Crook NE, Clem RJ, Miller LK (1993) An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol 67:2168–2174PubMedGoogle Scholar
  34. 34.
    Mannhold R, Fulda S, Carosati E (2010) IAP antagonists: promising candidates for cancer therapy. Drug Discov Today 15:210–219PubMedCrossRefGoogle Scholar
  35. 35.
    Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU, Benetatos CA, Chunduru SK, Condon SM, McKinlay M, Brink R, Leverkus M, Tergaonkar V, Schneider P, Callus BA, Koentgen F, Vaux DL, Silke J (2007) IAP antagonists target cIAP1 to induce TNFa-dependent apoptosis. Cell 131:682–693PubMedCrossRefGoogle Scholar
  36. 36.
    Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV, Kayagaki N, Garg P, Zobel K, Dynek JN, Elliott LO, Wallweber HJ, Flygare JA, Fairbrother WJ, Deshayes K, Dixit VM, Vucic D (2007) IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 131:669–681PubMedCrossRefGoogle Scholar
  37. 37.
    Eckelman BP, Salvesen GS, Scott FL (2006) Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 7:988–994PubMedCrossRefGoogle Scholar
  38. 38.
    Choi YE, Butterworth M, Malladi S, Duckett CS, Cohen GM, Bratton SB (2009) The E3 ubiquitin ligase cIAP1 binds and ubiquitinates caspase-3 and -7 via unique mechanisms at distinct steps in their processing. J Biol Chem 284:12772–12782PubMedCrossRefGoogle Scholar
  39. 39.
    Haas TL, Emmerich CH, Gerlach B, Schmukle AC, Cordier SM, Rieser E, Feltham R, Vince J, Warnken U, Wenger T, Koschny R, Komander D, Silke J, Walczak H (2009) Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol Cell 36:831–844PubMedCrossRefGoogle Scholar
  40. 40.
    Tracey L, Perez-Rosado A, Artiga MJ, Camacho FI, Rodriguez A, Martinez N, Ruiz-Ballesteros E, Mollejo M, Martinez B, Cuadros M, Garcia JF, Lawler M, Piris MA (2005) Expression of the NF-kappaB targets BCL2 and BIRC5/Survivin characterizes small B-cell and aggressive B-cell lymphomas, respectively. J Pathol 206:123–134PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–336PubMedCrossRefGoogle Scholar
  42. 42.
    Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Jaquith JB, Morris SJ, Barker PA (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30:689–700PubMedCrossRefGoogle Scholar
  43. 43.
    Lau R, Pratt MA (2012) The opposing roles of cellular inhibitor of apoptosis proteins in cancer. ISRN Oncol 2012:928120PubMedGoogle Scholar
  44. 44.
    Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A et al (2007) Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12:115–130PubMedCrossRefGoogle Scholar
  45. 45.
    Keats JJ, Fonseca R, Chesi M, Schop R, Baker A et al (2007) Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12:131–144PubMedCrossRefGoogle Scholar
  46. 46.
    Martinez-Ruiz G, Maldonado V, Ceballos-Cancino G, Grajeda JP, Melendez-Zajgla J (2008) Role of Smac/DIABLO in cancer progression. J Exp Clin Cancer Res 27:48PubMedCrossRefGoogle Scholar
  47. 47.
    Laukens B, Jennewein C, Schenk B, Vanlangenakker N, Schier A, Cristofanon S, Zobel K, Deshayes K, Vucic D, Jeremias I, Bertrand MJ, Vandenabeele P, Fulda S (2011) Smac mimetic bypasses apoptosis resistance in FADD- or caspase-8-deficient cells by priming for tumor necrosis factor alpha-induced necroptosis. Neoplasia 13:971–979PubMedGoogle Scholar
  48. 48.
    Ziegler DS, Wright RD, Kesari S, Lemieux ME, Tran MA, Jain M, Zawel L, Kung AL (2008) Resistance of human glioblastoma multiforme cells to growth factor inhibitors is overcome by blockade of inhibitor of apoptosis proteins. J Clin Invest 118:3109–3122PubMedCrossRefGoogle Scholar
  49. 49.
    Weisberg E, Kung AL, Wright RD, Moreno D, Catley L, Ray A, Zawel L, Tran M, Cools J, Gilliland G, Mitsiades C, McMillin DW, Jiang J, Hall-Meyers E, Griffin JD (2007) Potentiation of antileukemic therapies by Smac mimetic, LBW242: effects on mutant FLT3-expressing cells. Mol Cancer Ther 6:1951–1961PubMedCrossRefGoogle Scholar
  50. 50.
    Dineen SP, Roland CL, Greer R, Carbon JG, Toombs JE, Gupta P, Bardeesy N, Sun H, Williams N, Minna JD, Brekken RA (2010) Smac mimetic increases chemotherapy response and improves survival in mice with pancreatic cancer. Cancer Res 70:2852–2861PubMedCrossRefGoogle Scholar
  51. 51.
    Mehrotra S, Languino LR, Raskett CM, Mercurio AM, Dohi T, Altieri DC (2010) IAP regulation of metastasis. Cancer Cell 17:53–64PubMedCrossRefGoogle Scholar
  52. 52.
    Allensworth JL, Sauer SJ, Lyerly HK, Morse MA, Devi GR (2013) Smac mimetic Birinapant induces apoptosis and enhances TRAIL potency in inflammatory breast cancer cells in an IAP-dependent and TNF-alpha-independent mechanism. Breast Cancer Res Treat 137:359–371PubMedCrossRefGoogle Scholar
  53. 53.
    Greer RM, Peyton M, Larsen JE, Girard L, Xie Y, Gazdar AF, Harran P, Wang L, Brekken RA, Wang X, Minna JD (2011) SMAC mimetic (JP1201) sensitizes non-small cell lung cancers to multiple chemotherapy agents in an IAP-dependent but TNF-alpha-independent manner. Cancer Res 71:7640–7648PubMedCrossRefGoogle Scholar
  54. 54.
    Cohen S, Bruchim I, Graiver D, Evron Z, Oron-Karni V, Pasmanik-Chor M, Eitan R, Bernheim J, Levavi H, Fishman A, Flescher E (2013) Platinum-resistance in ovarian cancer cells is mediated by IL-6 secretion via the increased expression of its target cIAP-2. J Mol Med (Berl) 91:357–368CrossRefGoogle Scholar
  55. 55.
    Cheung HH, Mahoney DJ, Lacasse EC, Korneluk RG (2009) Down-regulation of c-FLIP Enhances death of cancer cells by smac mimetic compound. Cancer Res 69:7729–7738PubMedCrossRefGoogle Scholar
  56. 56.
    Yamaguchi N, Ito T, Azuma S, Ito E, Honma R, Yanagisawa Y, Nishikawa A, Kawamura M, Imai J, Watanabe S, Semba K, Inoue J (2009) Constitutive activation of nuclear factor-kappaB is preferentially involved in the proliferation of basal-like subtype breast cancer cell lines. Cancer Sci 100:1668–1674PubMedCrossRefGoogle Scholar
  57. 57.
    Wharry CE, Haines KM, Carroll RG, May MJ (2009) Constitutive non-canonical NFkappaB signaling in pancreatic cancer cells. Cancer Biol Ther 8:1567–1576PubMedCrossRefGoogle Scholar
  58. 58.
    Furuya Y, Mori K, Ninomiya T, Tomimori Y, Tanaka S, Takahashi N, Udagawa N, Uchida K, Yasuda H (2011) Increased bone mass in mice after single injection of anti-receptor activator of nuclear factor-kappaB ligand-neutralizing antibody: evidence for bone anabolic effect of parathyroid hormone in mice with few osteoclasts. J Biol Chem 286:37023–37031PubMedCrossRefGoogle Scholar
  59. 59.
    Tomimori Y, Mori K, Koide M, Nakamichi Y, Ninomiya T, Udagawa N, Yasuda H (2009) Evaluation of pharmaceuticals with a novel 50-hour animal model of bone loss. J Bone Miner Res 24:1194–1205PubMedCrossRefGoogle Scholar
  60. 60.
    Chlebowski RT, Col N (2012) Bisphosphonates and breast cancer prevention. Anticancer Agents Med Chem 12:144–150PubMedCrossRefGoogle Scholar
  61. 61.
    Kearney CJ, Sheridan C, Cullen SP, Tynan GA, Logue SE, Afonina IS, Vucic D, Lavelle EC, Martin SJ (2013) Inhibitor of apoptosis proteins (IAPs) and their antagonists regulate spontaneous and tumor necrosis factor (TNF)-induced proinflammatory cytokine and chemokine production. J Biol Chem 288:4878–4890PubMedCrossRefGoogle Scholar
  62. 62.
    Dougan M, Dougan S, Slisz J, Firestone B, Vanneman M, Draganov D, Goyal G, Li W, Neuberg D, Blumberg R, Hacohen N, Porter D, Zawel L, Dranoff G (2010) IAP inhibitors enhance co-stimulation to promote tumor immunity. J Exp Med 207:2195–2206PubMedCrossRefGoogle Scholar
  63. 63.
    Kenneth NS, Duckett CS (2012) IAP proteins: regulators of cell migration and development. Curr Opin Cell Biol 24:871–875PubMedCrossRefGoogle Scholar
  64. 64.
    Enwere EK, Boudreault L, Holbrook J, Timusk K, Earl N, Lacasse E, Renaud JM, Korneluk RG (2013) Loss of cIAP1 attenuates soleus muscle pathology and improves diaphragm function in mdx mice. Hum Mol Genet 22:867–878PubMedCrossRefGoogle Scholar
  65. 65.
    Enwere EK, Holbrook J, Lejmi-Mrad R, Vineham J, Timusk K, Sivaraj B, Isaac M, Uehling D, Al-awar R, LaCasse E, Korneluk RG (2012) TWEAK and cIAP1 regulate myoblast fusion through the noncanonical NF-kappaB signaling pathway. Sci Signal 5:ra75PubMedCrossRefGoogle Scholar
  66. 66.
    Qi Y, Xia P (2012) Cellular inhibitor of apoptosis protein-1 (cIAP1) plays a critical role in beta-cell survival under endoplasmic reticulum stress: promoting ubiquitination and degradation of C/EBP homologous protein (CHOP). J Biol Chem 287:32236–32245PubMedCrossRefGoogle Scholar
  67. 67.
    Phillipps HR, Hurst PR (2012) XIAP: a potential determinant of ovarian follicular fate. Reproduction 144:165–176PubMedCrossRefGoogle Scholar
  68. 68.
    Bank A, Wang P, Du C, Yu J, Zhang L (2008) SMAC mimetics sensitize nonsteroidal anti-inflammatory drug-induced apoptosis by promoting caspase-3-mediated cytochrome c release. Cancer Res 68:276–284PubMedCrossRefGoogle Scholar
  69. 69.
    Sekine K, Takubo K, Kikuchi R, Nishimoto M, Kitagawa M, Abe F, Nishikawa K, Tsuruo T, Naito M (2008) Small molecules destabilize cIAP1 by activating auto-ubiquitylation. J Biol Chem 283:8961–8968PubMedCrossRefGoogle Scholar
  70. 70.
    McManus DC, Lefebvre CA, Cherton-Horvat G, St-Jean M, Kandimalla ER, Agrawal S, Morris SJ, Durkin JP, Lacasse EC (2004) Loss of XIAP protein expression by RNAi and antisense approaches sensitizes cancer cells to functionally diverse chemotherapeutics. Oncogene 23:8105–8117PubMedCrossRefGoogle Scholar
  71. 71.
    Schimmer AD, Welsh K, Pinilla C, Wang Z, Krajewska M, Bonneau MJ, Pedersen IM, Kitada S, Scott FL, Bailly-Maitre B, Glinsky G, Scudiero D, Sausville E, Salvesen G, Nefzi A, Ostresh JM, Houghten RA, Reed JC (2004) Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Cancer Cell 5:25–35PubMedCrossRefGoogle Scholar
  72. 72.
    Wu TY, Wagner KW, Bursulaya B, Schultz PG, Deveraux QL (2003) Development and characterization of nonpeptidic small molecule inhibitors of the XIAP/caspase-3 interaction. Chem Biol 10:759–767PubMedCrossRefGoogle Scholar
  73. 73.
    Nikolovska-Coleska Z, Xu L, Hu Z, Tomita Y, Li P, Roller PP, Wang R, Fang X, Guo R, Zhang M, Lippman ME, Yang D, Wang S (2004) Discovery of embelin as a cell-permeable, small-molecular weight inhibitor of XIAP through structure-based computational screening of a traditional herbal medicine three-dimensional structure database. J Med Chem 47:2430–2440PubMedCrossRefGoogle Scholar
  74. 74.
    Cai Q, Sun H, Peng Y, Lu J, Nikolovska-Coleska Z, McEachern D, Liu L, Qiu S, Yang CY, Miller R, Yi H, Zhang T, Sun D, Kang S, Guo M, Leopold L, Yang D, Wang S (2011) A potent and orally active antagonist (SM-406/AT-406) of multiple inhibitor of apoptosis proteins (IAPs) in clinical development for cancer treatment. J Med Chem 54:2714–2726PubMedCrossRefGoogle Scholar
  75. 75.
    Flygare JA, Beresini M, Budha N, Chan H, Chan IT et al (2012) Discovery of a potent small-molecule antagonist of inhibitor of apoptosis (IAP) proteins and clinical candidate for the treatment of cancer (GDC-0152). J Med Chem 55:4101–4113PubMedCrossRefGoogle Scholar
  76. 76.
    Houghton PJ, Kang MH, Reynolds CP, Morton CL, Kolb EA, Gorlick R, Keir ST, Carol H, Lock R, Maris JM, Billups CA, Smith MA (2012) Initial testing (stage 1) of LCL161, a SMAC mimetic, by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer 58:636–639PubMedCrossRefGoogle Scholar
  77. 77.
    Lu J, Bai L, Sun H, Nikolovska-Coleska Z, McEachern D, Qiu S, Miller RS, Yi H, Shangary S, Sun Y, Meagher JL, Stuckey JA, Wang S (2008) SM-164: a novel, bivalent Smac mimetic that induces apoptosis and tumor regression by concurrent removal of the blockade of cIAP-1/2 and XIAP. Cancer Res 68:9384–9393PubMedCrossRefGoogle Scholar
  78. 78.
    Callies S, Andre V, Patel B, Waters D, Francis P, Burgess M, Lahn M (2011) Integrated analysis of preclinical data to support the design of the first in man study of LY2181308, a second generation antisense oligonucleotide. Br J Clin Pharmacol 71:416–428PubMedCrossRefGoogle Scholar
  79. 79.
    Nakahara T, Kita A, Yamanaka K, Mori M, Amino N, Takeuchi M, Tominaga F, Hatakeyama S, Kinoyama I, Matsuhisa A, Kudoh M, Sasamata M (2007) YM155, a novel small-molecule survivin suppressant, induces regression of established human hormone-refractory prostate tumor xenografts. Cancer Res 67:8014–8021PubMedCrossRefGoogle Scholar
  80. 80.
    Rowe DL, Ozbay T, Bender LM, Nahta R (2008) Nordihydroguaiaretic acid, a cytotoxic insulin-like growth factor-I receptor/HER2 inhibitor in trastuzumab-resistant breast cancer. Mol Cancer Ther 7:1900–1908PubMedCrossRefGoogle Scholar
  81. 81.
    Curtin JC, Lorenzi MV (2010) Drug discovery approaches to target Wnt signaling in cancer stem cells. Oncotarget 1:563–577Google Scholar
  82. 82.
    Sapra P, Wang M, Bandaru R, Zhao H, Greenberger LM, Horak ID (2010) Down-modulation of survivin expression and inhibition of tumor growth in vivo by EZN-3042, a locked nucleic acid antisense oligonucleotide. Nucleosides Nucleotides Nucleic Acids 29:97–112PubMedCrossRefGoogle Scholar
  83. 83.
    Varfolomeev E, Moradi E, Dynek JN, Zha J, Fedorova AV, Deshayes K, Fairbrother WJ, Newton K, Le Couter J, Vucic D (2012) Characterization of ML-IAP protein stability and physiological role in vivo. Biochem J 447:427–436PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer Japan 2013

Authors and Affiliations

  1. 1.Division of Bone and Mineral Diseases, Department of MedicineWashington University School of MedicineSt. LouisUSA
  2. 2.Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUSA
  3. 3.Division of Bone and Mineral Diseases, Departments of Medicine and PathologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations