Advertisement

Journal of Bone and Mineral Metabolism

, Volume 31, Issue 5, pp 486–495 | Cite as

IL-34 and CSF-1: similarities and differences

  • Yuko NakamichiEmail author
  • Nobuyuki Udagawa
  • Naoyuki Takahashi
Invited Review

Abstract

Colony-stimulating factor-1 (CSF-1) is widely expressed and considered to regulate the development, maintenance, and function of mononuclear phagocyte lineage cells such as monocytes, macrophages, dendritic cells (DCs), Langerhans cells (LCs), microglia, and osteoclasts. Interleukin-34 (IL-34) was recently identified as an alternative ligand for the CSF-1 receptor (CSF-1R) through functional proteomics experiments. It is well established that the phenotype of CSF-1R-deficient (CSF-1R−/−) mice is more severe than that of mice bearing a spontaneous null mutation in CSF-1 (CSF-1op/op). CSF-1R−/− mice are severely depleted of macrophages and completely lack LCs, microglia, and osteoclasts during their lifetime. In contrast, CSF-1op/op mice exhibit late-onset macrophage development and osteoclastogenesis, whereas they show modestly reduced numbers of microglia and a relatively normal LC development. In contrast, IL-34-deficient (IL-34−/−) mice show a marked reduction of LCs and a decrease in microglia. IL-34 and CSF-1 display different spatiotemporal expression patterns and have distinct biological functions. In this review, we focus on the functional similarities and differences between IL-34 and CSF-1 in vivo.

Keywords

IL-34 CSF-1 CSF-1R MPS (mononuclear phagocyte system) Macrophage 

Notes

Acknowledgments

We thank Dr. Takashi Nakamura (Keio University) for providing us with generous assistance and valuable information in the preparation of this manuscript.

Conflict of interest

The authors have no conflicts of interest.

References

  1. 1.
    Pollard JW (2009) Trophic macrophages in development and disease. Nat Rev Immunol 9:259–270PubMedCrossRefGoogle Scholar
  2. 2.
    Chow A, Brown BD, Merad M (2011) Studying the mononuclear phagocyte system in the molecular age. Nat Rev Immunol 11:788–798PubMedCrossRefGoogle Scholar
  3. 3.
    Stanley ER, Berg KL, Einstein DB, Lee PS, Yeung YG (1994) The biology and action of colony stimulating factor-1. Stem Cells 12:15–24 (discussion 25)PubMedGoogle Scholar
  4. 4.
    Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E, Halenbeck R, Wu G, Zhou A, Behrens D, Hollenbaugh D, Linnemann T, Qin M, Wong J, Chu K, Doberstein SK, Williams LT (2008) Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320:807–811PubMedCrossRefGoogle Scholar
  5. 5.
    Chen Z, Buki K, Vääräniemi J, Gu G, Väänänen HK (2011) The critical role of IL-34 in osteoclastogenesis. PLoS ONE 6:e18689PubMedCrossRefGoogle Scholar
  6. 6.
    Wei S, Nandi S, Chitu V, Yeung YG, Yu W, Huang M, Williams LT, Lin H, Stanley ER (2010) Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. J Leukoc Biol 88:495–505PubMedCrossRefGoogle Scholar
  7. 7.
    Garceau V, Smith J, Paton IR, Davey M, Fares MA, Sester DP, Burt DW, Hume DA (2010) Pivotal advance: Avian colony-stimulating factor 1 (CSF-1), interleukin-34 (IL-34), and CSF-1 receptor genes and gene products. J Leukoc Biol 87:753–764PubMedCrossRefGoogle Scholar
  8. 8.
    Ma X, Lin WY, Chen Y, Stawicki S, Mukhyala K, Wu Y, Martin F, Bazan JF, Starovasnik MA (2012) Structural basis for the dual recognition of helical cytokines IL-34 and CSF-1 by CSF-1R. Structure 20:676–687PubMedCrossRefGoogle Scholar
  9. 9.
    Felix J, Elegheert J, Gutsche I, Shkumatov AV, Wen Y, Bracke N, Pannecoucke E, Vandenberghe I, Devreese B, Svergun DI, Pauwels E, Vergauwen B, Savvides SN (2013) Human IL-34 and CSF-1 establish structurally similar extracellular assemblies with their common hematopoietic receptor. Structure 21:528–539PubMedCrossRefGoogle Scholar
  10. 10.
    Deng P, Wang YL, Pattengale PK, Rettenmier CW (1996) The role of individual cysteine residues in the processing, structure, and function of human macrophage colony-stimulating factor. Biochem Biophys Res Commun 228:557–566PubMedCrossRefGoogle Scholar
  11. 11.
    Verstraete K, Savvides SN (2012) Extracellular assembly and activation principles of oncogenic class III receptor tyrosine kinases. Nat Rev Cancer 12:753–766PubMedCrossRefGoogle Scholar
  12. 12.
    Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y, Tesio M, Samstein RM, Goichberg P, Spiegel A, Elson A, Lapidot T (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 12:657–664PubMedCrossRefGoogle Scholar
  13. 13.
    Kubota Y, Takubo K, Shimizu T, Ohno H, Kishi K, Shibuya M, Saya H, Suda T (2009) M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J Exp Med 206:1089–1102PubMedCrossRefGoogle Scholar
  14. 14.
    Lobov IB, Rao S, Carroll TJ, Vallance JE, Ito M, Ondr JK, Kurup S, Glass DA, Patel MS, Shu W, Morrisey EE, McMahon AP, Karsenty G, Lang RA (2005) WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature (Lond) 437:417–421CrossRefGoogle Scholar
  15. 15.
    Miyamoto K, Yoshida S, Kawasumi M, Hashimoto K, Kimura T, Sato Y, Kobayashi T, Miyauchi Y, Hoshi H, Iwasaki R, Miyamoto H, Hao W, Morioka H, Chiba K, Yasuda H, Penninger JM, Toyama Y, Suda T, Miyamoto T (2011) Osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization. J Exp Med 208:2175–2181PubMedCrossRefGoogle Scholar
  16. 16.
    Pollard JW, Hennighausen L (1994) Colony stimulating factor 1 is required for mammary gland development during pregnancy. Proc Natl Acad Sci USA 91:9312–9316PubMedCrossRefGoogle Scholar
  17. 17.
    Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR, Libby P, Weissleder R, Pittet MJ (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325:612–616PubMedCrossRefGoogle Scholar
  18. 18.
    Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F, Poulton IJ, van Rooijen N, Alexander KA, Raggatt LJ, Levesque JP (2010) Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116:4815–4828PubMedCrossRefGoogle Scholar
  19. 19.
    Sasmono RT, Oceandy D, Pollard JW, Tong W, Pavli P, Wainwright BJ, Ostrowski MC, Himes SR, Hume DA (2003) A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101:1155–1163PubMedCrossRefGoogle Scholar
  20. 20.
    Cecchini MG, Dominguez MG, Mocci S, Wetterwald A, Felix R, Fleisch H, Chisholm O, Hofstetter W, Pollard JW, Stanley ER (1994) Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development (Camb) 120:1357–1372Google Scholar
  21. 21.
    Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, Sylvestre V, Stanley ER (2002) Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99:111–120PubMedCrossRefGoogle Scholar
  22. 22.
    Dai XM, Zong XH, Akhter MP, Stanley ER (2004) Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblast behavior in developing bone. J Bone Miner Res 19:1441–1451PubMedCrossRefGoogle Scholar
  23. 23.
    Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW Jr, Ahmed-Ansari A, Sell KW, Pollard JW, Stanley ER (1990) Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci USA 87:4828–4832PubMedCrossRefGoogle Scholar
  24. 24.
    Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature (Lond) 345:442–444CrossRefGoogle Scholar
  25. 25.
    Reddy EP, Korapati A, Chaturvedi P, Rane S (2000) IL-3 signaling and the role of Src kinases, JAKs and STATs: a covert liaison unveiled. Oncogene 19:2532–2547PubMedCrossRefGoogle Scholar
  26. 26.
    Robb L (2007) Cytokine receptors and hematopoietic differentiation. Oncogene 26:6715–6723PubMedCrossRefGoogle Scholar
  27. 27.
    Nishinakamura R, Miyajima A, Mee PJ, Tybulewicz VL, Murray R (1996) Hematopoiesis in mice lacking the entire granulocyte-macrophage colony-stimulating factor/interleukin-3/interleukin-5 functions. Blood 88:2458–2464PubMedGoogle Scholar
  28. 28.
    Merad M, Manz MG (2009) Dendritic cell homeostasis. Blood 113:3418–3427PubMedCrossRefGoogle Scholar
  29. 29.
    Belz GT, Nutt SL (2012) Transcriptional programming of the dendritic cell network. Nat Rev Immunol 12:101–113PubMedCrossRefGoogle Scholar
  30. 30.
    Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J (1992) GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature (Lond) 360:258–261CrossRefGoogle Scholar
  31. 31.
    Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, Muramatsu S, Steinman RM (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176:1693–1702PubMedCrossRefGoogle Scholar
  32. 32.
    van de Laar L, Coffer PJ, Woltman AM (2012) Regulation of dendritic cell development by GM-CSF: molecular control and implications for immune homeostasis and therapy. Blood 119:3383–3393PubMedCrossRefGoogle Scholar
  33. 33.
    Dranoff G, Crawford AD, Sadelain M, Ream B, Rashid A, Bronson RT, Dickersin GR, Bachurski CJ, Mark EL, Whitsett JA, Mulligant RC (1994) Involvement of granulocyte–macrophage colony-stimulating factor in pulmonary homeostasis. Science 264:713–716PubMedCrossRefGoogle Scholar
  34. 34.
    Stanley E, Lieschke GJ, Grail D, Metcalf D, Hodgson G, Gall JA, Maher DW, Cebon J, Sinickas V, Dunn AR (1994) Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc Natl Acad Sci USA 91:5592–5596PubMedCrossRefGoogle Scholar
  35. 35.
    Vremec D, Lieschke GJ, Dunn AR, Robb L, Metcalf D, Shortman K (1997) The influence of granulocyte/macrophage colony-stimulating factor on dendritic cell levels in mouse lymphoid organs. Eur J Immunol 27:40–44PubMedCrossRefGoogle Scholar
  36. 36.
    Maraskovsky E, Brasel K, Teepe M, Roux ER, Lyman SD, Shortman K, McKenna HJ (1996) Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med 184:1953–1962PubMedCrossRefGoogle Scholar
  37. 37.
    McKenna HJ, Stocking KL, Miller RE, Brasel K, De Smedt T, Maraskovsky E, Maliszewski CR, Lynch DH, Smith J, Pulendran B, Roux ER, Teepe M, Lyman SD, Peschon JJ (2000) Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95:3489–3497PubMedGoogle Scholar
  38. 38.
    Waskow C, Liu K, Darrasse-Jeze G, Guermonprez P, Ginhoux F, Merad M, Shengelia T, Yao K, Nussenzweig M (2008) The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol 9:676–683PubMedCrossRefGoogle Scholar
  39. 39.
    Tussiwand R, Onai N, Mazzucchelli L, Manz MG (2005) Inhibition of natural type I IFN-producing and dendritic cell development by a small molecule receptor tyrosine kinase inhibitor with Flt3 affinity. J Immunol 175:3674–3680PubMedGoogle Scholar
  40. 40.
    Bjorck P (2001) Isolation and characterization of plasmacytoid dendritic cells from Flt3 ligand and granulocyte-macrophage colony-stimulating factor-treated mice. Blood 98:3520–3526PubMedCrossRefGoogle Scholar
  41. 41.
    Karsunky H, Merad M, Cozzio A, Weissman IL, Manz MG (2003) Flt3 ligand regulates dendritic cell development from Flt3 + lymphoid and myeloid-committed progenitors to Flt3 + dendritic cells in vivo. J Exp Med 198:305–313PubMedCrossRefGoogle Scholar
  42. 42.
    Ginhoux F, Tacke F, Angeli V, Bogunovic M, Loubeau M, Dai XM, Stanley ER, Randolph GJ, Merad M (2006) Langerhans cells arise from monocytes in vivo. Nat Immunol 7:265–273PubMedCrossRefGoogle Scholar
  43. 43.
    Greter M, Lelios I, Pelczar P, Hoeffel G, Price J, Leboeuf M, Kündig TM, Frei K, Ginhoux F, Merad M, Becher B (2012) Stroma-derived interleukin-34 controls the development and maintenance of Langerhans cells and the maintenance of microglia. Immunity 37:1050–1060PubMedCrossRefGoogle Scholar
  44. 44.
    Onai N, Obata-Onai A, Schmid MA, Ohteki T, Jarrossay D, Manz MG (2007) Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat Immunol 8:1207–1216PubMedCrossRefGoogle Scholar
  45. 45.
    Fancke B, Suter M, Hochrein H, O’Keeffe M (2008) M-CSF: a novel plasmacytoid and conventional dendritic cell poietin. Blood 111:150–159PubMedCrossRefGoogle Scholar
  46. 46.
    Tagliani E, Shi C, Nancy P, Tay CS, Pamer EG, Erlebacher A (2011) Coordinate regulation of tissue macrophage and dendritic cell population dynamics by CSF-1. J Exp Med 208:1901–1916PubMedCrossRefGoogle Scholar
  47. 47.
    Hoeffel G, Wang Y, Greter M, See P, Teo P, Malleret B, Leboeuf M, Low D, Oller G, Almeida F, Choy SH, Grisotto M, Renia L, Conway SJ, Stanley ER, Chan JK, Ng LG, Samokhvalov IM, Merad M, Ginhoux F (2012) Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med 209:1167–1181PubMedCrossRefGoogle Scholar
  48. 48.
    Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845PubMedCrossRefGoogle Scholar
  49. 49.
    Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, Cella M, Barrow AD, Diamond MS, Colonna M (2012) IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol 13:753–760PubMedCrossRefGoogle Scholar
  50. 50.
    Merad M, Ginhoux F, Collin M (2008) Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol 8:935–947PubMedCrossRefGoogle Scholar
  51. 51.
    Begg SK, Radley JM, Pollard JW, Chisholm OT, Stanley ER, Bertoncello I (1993) Delayed hematopoietic development in osteopetrotic (op/op) mice. J Exp Med 177:237–242PubMedCrossRefGoogle Scholar
  52. 52.
    Witmer-Pack MD, Hughes DA, Schuler G, Lawson L, McWilliam A, Inaba K, Steinman RM, Gordon S (1993) Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse. J Cell Sci 104:1021–1029PubMedGoogle Scholar
  53. 53.
    Michaelson MD, Bieri PL, Mehler MF, Xu H, Arezzo JC, Pollard JW, Kessler JA (1996) CSF-1 deficiency in mice results in abnormal brain development. Development (Camb) 122:2661–2672Google Scholar
  54. 54.
    Wegiel J, Wisniewski HM, Dziewiatkowski J, Tarnawski M, Kozielski R, Trenkner E, Wiktor-Jedrzejczak W (1998) Reduced number and altered morphology of microglial cells in colony stimulating factor-1-deficient osteopetrotic op/op mice. Brain Res 804:135–139PubMedCrossRefGoogle Scholar
  55. 55.
    Kondo Y, Lemere CA, Seabrook TJ (2007) Osteopetrotic (op/op) mice have reduced microglia, no Abeta deposition, and no changes in dopaminergic neurons. J Neuroinflammation 4:31PubMedCrossRefGoogle Scholar
  56. 56.
    Yamamoto T, Kaizu C, Kawasaki T, Hasegawa G, Umezu H, Ohashi R, Sakurada J, Jiang S, Shultz L, Naito M (2008) Macrophage colony-stimulating factor is indispensable for repopulation and differentiation of Kupffer cells but not for splenic red pulp macrophages in osteopetrotic (op/op) mice after macrophage depletion. Cell Tissue Res 332:245–256PubMedCrossRefGoogle Scholar
  57. 57.
    Nakamichi Y, Mizoguchi T, Arai A, Kobayashi Y, Sato M, Penninger JM, Yasuda H, Kato S, DeLuca HF, Suda T, Udagawa N, Takahashi N (2012) Spleen serves as a reservoir of osteoclast precursors through vitamin D-induced IL-34 expression in osteopetrotic op/op mice. Proc Natl Acad Sci USA 109:10006–10011PubMedCrossRefGoogle Scholar
  58. 58.
    Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20:345–357PubMedCrossRefGoogle Scholar
  59. 59.
    Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature (Lond) 423:337–342CrossRefGoogle Scholar
  60. 60.
    Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature (Lond) 397:315–323CrossRefGoogle Scholar
  61. 61.
    Mizoguchi T, Muto A, Udagawa N, Arai A, Yamashita T et al (2009) Identification of cell cycle-arrested quiescent osteoclast precursors in vivo. J Cell Biol 184:541–554PubMedCrossRefGoogle Scholar
  62. 62.
    Takahashi N, Muto A, Arai A, Mizoguchi T (2010) Identification of cell cycle-arrested quiescent osteoclast precursors in vivo. Adv Exp Med Biol 658:21–30PubMedCrossRefGoogle Scholar
  63. 63.
    Muto A, Mizoguchi T, Udagawa N, Ito S, Kawahara I, Abiko Y, Arai A, Harada S, Kobayashi Y, Nakamichi Y, Penninger JM, Noguchi T, Takahashi N (2011) Lineage-committed osteoclast precursors circulate in blood and settle down into bone. J Bone Miner Res 26:2978–2990PubMedCrossRefGoogle Scholar
  64. 64.
    Rademakers R, Baker M, Nicholson AM et al (2012) Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet 44:200–205CrossRefGoogle Scholar
  65. 65.
    Ridge SA, Worwood M, Oscier D, Jacobs A, Padua RA (1990) FMS mutations in myelodysplastic, leukemic, and normal subjects. Proc Natl Acad Sci USA 87:1377–1380PubMedCrossRefGoogle Scholar
  66. 66.
    Soares MJ, Pinto M, Henrique R, Vieira J, Cerveira N, Peixoto A, Martins AT, Oliveira J, Jeronimo C, Teixeira MR (2009) CSF1R copy number changes, point mutations, and RNA and protein overexpression in renal cell carcinomas. Mod Pathol 22:744–752PubMedGoogle Scholar
  67. 67.
    Kluger HM, Dolled-Filhart M, Rodov S, Kacinski BM, Camp RL, Rimm DL (2004) Macrophage colony-stimulating factor-1 receptor expression is associated with poor outcome in breast cancer by large cohort tissue microarray analysis. Clin Cancer Res 10:173–177PubMedCrossRefGoogle Scholar
  68. 68.
    Baiocchi G, Kavanagh JJ, Talpaz M, Wharton JT, Gutterman JU, Kurzrock R (1991) Expression of the macrophage colony-stimulating factor and its receptor in gynecologic malignancies. Cancer (Phila) 67:990–996CrossRefGoogle Scholar
  69. 69.
    Smith HO, Anderson PS, Kuo DY, Goldberg GL, DeVictoria CL, Boocock CA, Jones JG, Runowicz CD, Stanley ER, Pollard JW (1995) The role of colony-stimulating factor 1 and its receptor in the etiopathogenesis of endometrial adenocarcinoma. Clin Cancer Res 1:313–325PubMedGoogle Scholar
  70. 70.
    Chambers SK, Kacinski BM, Ivins CM, Carcangiu ML (1997) Overexpression of epithelial macrophage colony-stimulating factor (CSF-1) and CSF-1 receptor: a poor prognostic factor in epithelial ovarian cancer, contrasted with a protective effect of stromal CSF-1. Clin Cancer Res 3:999–1007PubMedGoogle Scholar
  71. 71.
    Toy EP, Chambers JT, Kacinski BM, Flick MB, Chambers SK (2001) The activated macrophage colony-stimulating factor (CSF-1) receptor as a predictor of poor outcome in advanced epithelial ovarian carcinoma. Gynecol Oncol 80:194–200PubMedCrossRefGoogle Scholar
  72. 72.
    Ide H, Seligson DB, Memarzadeh S, Xin L, Horvath S, Dubey P, Flick MB, Kacinski BM, Palotie A, Witte ON (2002) Expression of colony-stimulating factor 1 receptor during prostate development and prostate cancer progression. Proc Natl Acad Sci USA 99:14404–14409PubMedCrossRefGoogle Scholar
  73. 73.
    Seitz M, Loetscher P, Fey MF, Tobler A (1994) Constitutive mRNA and protein production of macrophage colony-stimulating factor but not of other cytokines by synovial fibroblasts from rheumatoid arthritis and osteoarthritis patients. Br J Rheumatol 33:613–619PubMedCrossRefGoogle Scholar
  74. 74.
    Kawaji H, Yokomura K, Kikuchi K, Somoto Y, Shirai Y (1995) Macrophage colony-stimulating factor in patients with rheumatoid arthritis. Nihon Ika Daigaku Zasshi 62:260–270PubMedGoogle Scholar
  75. 75.
    Cupp JS, Miller MA, Montgomery KD, Nielsen TO, O’Connell JX, Huntsman D, van de Rijn M, Gilks CB, West RB (2007) Translocation and expression of CSF1 in pigmented villonodular synovitis, tenosynovial giant cell tumor, rheumatoid arthritis and other reactive synovitides. Am J Surg Pathol 31:970–976PubMedCrossRefGoogle Scholar
  76. 76.
    Hwang SJ, Choi B, Kang SS et al (2012) Interleukin-34 produced by human fibroblast-like synovial cells in rheumatoid arthritis supports osteoclastogenesis. Arthritis Res Ther 14:R14PubMedCrossRefGoogle Scholar
  77. 77.
    Chemel M, Le Goff B, Brion R et al (2012) Interleukin 34 expression is associated with synovitis severity in rheumatoid arthritis patients. Ann Rheum Dis 71:150–154PubMedCrossRefGoogle Scholar
  78. 78.
    Ciccia F, Alessandro R, Rodolico V et al. (2013) IL-34 is overexpressed in the inflamed salivary glands of patients with Sjögren’s syndrome and is associated with the local expansion of pro-inflammatory CD14brightCD16+ monocytes. Rheumatology 52(6):1009–1017Google Scholar
  79. 79.
    Hume DA, MacDonald KP (2012) Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 119:1810–1820PubMedCrossRefGoogle Scholar
  80. 80.
    Cenci S, Weitzmann MN, Gentile MA, Aisa MC, Pacifici R (2000) M-CSF neutralization and EGR-1 deficiency prevent ovariectomy-induced bone loss. J Clin Invest 105:1279–1287PubMedCrossRefGoogle Scholar
  81. 81.
    Campbell IK, Rich MJ, Bischof RJ, Hamilton JA (2000) The colony-stimulating factors and collagen-induced arthritis: exacerbation of disease by M-CSF and G-CSF and requirement for endogenous M-CSF. J Leukoc Biol 68:144–150PubMedGoogle Scholar
  82. 82.
    Ohno H, Uemura Y, Murooka H, Takanashi H, Tokieda T, Ohzeki Y, Kubo K, Serizawa I (2008) The orally-active and selective c-Fms tyrosine kinase inhibitor Ki20227 inhibits disease progression in a collagen-induced arthritis mouse model. Eur J Immunol 38:283–291PubMedCrossRefGoogle Scholar
  83. 83.
    Smith JD, Trogan E, Ginsberg M, Grigaux C, Tian J, Miyata M (1995) Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci USA 92:8264–8268PubMedCrossRefGoogle Scholar
  84. 84.
    Murayama T, Yokode M, Kataoka H, Imabayashi T, Yoshida H, Sano H, Nishikawa S, Kita T (1999) Intraperitoneal administration of anti-c-fms monoclonal antibody prevents initial events of atherogenesis but does not reduce the size of advanced lesions in apolipoprotein E-deficient mice. Circulation 99:1740–1746PubMedCrossRefGoogle Scholar
  85. 85.
    Baran CP, Opalek JM, McMaken S, Newland CA, O’Brien JM Jr, Hunter MG, Bringardner BD, Monick MM, Brigstock DR, Stromberg PC, Hunninghake GW, Marsh CB (2007) Important roles for macrophage colony-stimulating factor, CC chemokine ligand 2, and mononuclear phagocytes in the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med 176:78–89PubMedCrossRefGoogle Scholar
  86. 86.
    Lim AK, Ma FY, Nikolic-Paterson DJ, Thomas MC, Hurst LA, Tesch GH (2009) Antibody blockade of c-fms suppresses the progression of inflammation and injury in early diabetic nephropathy in obese db/db mice. Diabetologia 52:1669–1679PubMedCrossRefGoogle Scholar
  87. 87.
    Menke J, Rabacal WA, Byrne KT, Iwata Y, Schwartz MM, Stanley ER, Schwarting A, Kelley VR (2009) Circulating CSF-1 promotes monocyte and macrophage phenotypes that enhance lupus nephritis. J Am Soc Nephrol 20:2581–2592PubMedCrossRefGoogle Scholar
  88. 88.
    Marshall D, Cameron J, Lightwood D, Lawson AD (2007) Blockade of colony stimulating factor-1 (CSF-I) leads to inhibition of DSS-induced colitis. Inflamm Bowel Dis 13:219–224PubMedCrossRefGoogle Scholar
  89. 89.
    Lin EY, Nguyen AV, Russell RG, Pollard JW (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193:727–740PubMedCrossRefGoogle Scholar
  90. 90.
    Hamilton JA (2008) Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 8:533–544PubMedCrossRefGoogle Scholar
  91. 91.
    Burns CJ, Wilks AF (2011) c-FMS inhibitors: a patent review. Expert Opin Ther Pat 21:147–165PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer Japan 2013

Authors and Affiliations

  • Yuko Nakamichi
    • 1
    Email author
  • Nobuyuki Udagawa
    • 2
  • Naoyuki Takahashi
    • 1
  1. 1.Institute for Oral ScienceMatsumoto Dental UniversityShiojiriJapan
  2. 2.Department of BiochemistryMatsumoto Dental UniversityShiojiriJapan

Personalised recommendations