Journal of Bone and Mineral Metabolism

, Volume 31, Issue 4, pp 381–389

PCAF acetylates Runx2 and promotes osteoblast differentiation

  • Chao-Yang Wang
  • Shu-Feng Yang
  • Zhong Wang
  • Jun-Ming Tan
  • Shun-Min Xing
  • De-Chun Chen
  • Sheng-Ming Xu
  • Wen Yuan
Original Article
  • 547 Downloads

Abstract

Osteoblasts play a crucial role in bone formation. However, the molecular mechanisms involved in osteoblast differentiation remain largely unclear. Runt-related gene 2 (Runx2) is a master transcriptional factor for osteoblast differentiation. Here we reported that p300/CBP-associated factor (PCAF) directly binds to Runx2 and acetylates Runx2, leading to an increase in its transcriptional activity. Upregulation of PCAF in MC3T3-E1 cells increases the expression of osteogenic marker genes including alkaline phosphatase (ALP), osteocalcin (Ocn), and Osteopontin (Opn), and ALP activity was stimulated as well. Consequently, the mineralization of MC3T3-E1 cells was remarkably improved by PCAF. In contrast, PCAF knockdown decreases the mRNA levels of ALP, Ocn, and Opn. ALP activity and the mineralized area were attenuated under PCAF knockdown conditions. These results indicate that PCAF is an important regulator for promoting osteoblast differentiation via acetylation modification of Runx2.

Keywords

PCAF Runx2 Acetylation Osteoblast differentiation 

References

  1. 1.
    Rodan GA, Martin TJ (2000) Therapeutic approaches to bone disease. Science 289:1508–1514PubMedCrossRefGoogle Scholar
  2. 2.
    Long F (2011) Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 13:27–38PubMedCrossRefGoogle Scholar
  3. 3.
    Canalis E, Economides AN, Gazzerro E (2003) Bone morphogenetic proteins, their antagonists and the skeleton. Endor Rev 24:218–235CrossRefGoogle Scholar
  4. 4.
    Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754PubMedCrossRefGoogle Scholar
  5. 5.
    Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:765–771CrossRefGoogle Scholar
  6. 6.
    Zhou YX, Xu X, Chen L, Li C, Brodie SG, Deng CX (2000) A Pro250Arg substitution in mouse Fgfr1 causes increased expression of Cbfa1 and premature fusion of calvarial sutures. Hum Mol Genet 9:2001–2008PubMedCrossRefGoogle Scholar
  7. 7.
    Lee KS, Kim HJ, Li QL, Chi XZ, Ueta C, Komori T, Wozney JM, Kim EG, Choi JY, Ryoo HM, Bae SC (2000) Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol 20:8783–8792PubMedCrossRefGoogle Scholar
  8. 8.
    Wee HJ, Huang G, Shigesada K, Ito Y (2002) Serine phosphorylation of RUNX2 with novel potential functions as negative regulatory mechanisms. EMBO Rep 3:967–974PubMedCrossRefGoogle Scholar
  9. 9.
    Kugimiya F, Kawaguchi H, Ohba S, Kawamura N, Hirata M, Chikuda H, Azuma Y, Woodgett JR, Nakamura K, Chung UI (2007) GSK-3beta controls osteogenesis through regulating Runx2 activity. PLoS ONE 2:e837PubMedCrossRefGoogle Scholar
  10. 10.
    Huang YF, Lin JJ, Lin CH, Su Y, Hung SC (2012) c-Jun N-terminal kinase 1 negatively regulates osteoblastic differentiation induced by BMP-2 via phosphorylation of Runx2 at Ser104. J Bone Miner Res 27:1093–1105PubMedCrossRefGoogle Scholar
  11. 11.
    Xiao G, Jiang D, Gopalakrishnan R, Franceschi RT (2002) Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2. J Biol Chem 277:36181–36187PubMedCrossRefGoogle Scholar
  12. 12.
    Huang G, Shigesada K, Ito K, Wee HJ, Yokomizo T, Ito Y (2001) Dimerization with PEBP2beta protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. EMBO J 20:723–733PubMedCrossRefGoogle Scholar
  13. 13.
    Shen R, Wang X, Drissi H, Liu F, O’Keefe RF, Chen D (2006) Cyclin D1-cdk4 induce runx2 ubiquitination and degradation. J Biol Chem 281:16347–16353PubMedCrossRefGoogle Scholar
  14. 14.
    Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD, Berger SL (1999) p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol 19:1202–1209PubMedGoogle Scholar
  15. 15.
    Ge X, Jin Q, Zhang F, Yan T, Zhai Q (2009) PCAF acetylates beta-catenin and improves its stability. Mol Cell Biol 20:419–427CrossRefGoogle Scholar
  16. 16.
    Pickard A, Wong PP, McCance DJ (2010) Acetylation of Rb by PCAF is required for nuclear localization and keratinocyte differentiation. J Cell Sci 123:3718–3726PubMedCrossRefGoogle Scholar
  17. 17.
    Qiao JL, Chu KL, Lee J, Koh PL, Rajasegaran V, Teo JY, Chao SH (2011) PCAF interacts with XBP-1S and mediates XBP-1S-dependent transcription. Nucleic Acids Res 39:429–439CrossRefGoogle Scholar
  18. 18.
    Li Y, Ge C, Long JP, Begun DL, Rodriguez JA, Goldstein SA, Franceschi RT (2012) Biochemical stimulation of osteoblast gene expression requires phosphorylation of the RUNX2 transcription factor. J Bone Miner Res 27:1263–1274PubMedCrossRefGoogle Scholar
  19. 19.
    Kann S, Chiu R, Ma T, Goodman SB (2010) OP-1 (BMP-7) stimulates osteoprogenitor cell differentiation in the presence of polymethylmethacrylate particles. J Biomed Mater Res Part A 94A:485–488Google Scholar
  20. 20.
    Takahashi N, Udagawa N, Kobayashi Y, Suda T (2007) Generation of osteoblasts in vitro, and assay of osteoclast activity. Methods Mol Med 135:285–301PubMedCrossRefGoogle Scholar
  21. 21.
    Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70:81–120PubMedCrossRefGoogle Scholar
  22. 22.
    Kihara T, Ichikawa S, Yonezawa T, Lee JW, Akihisa T, Woo JT, Michi Y, Amagasa T, Yamaguchi A (2011) Acerogenin A, a natural compound isolated from Ace nikoense Maxim, stimulates osteoblast differentiation through bone morphogenetic protein action. Biochem Biophys Res Commun 406:211–217PubMedCrossRefGoogle Scholar
  23. 23.
    Yonezawa T, Lee JW, Hibino A, Asai M, Hojo H, Cha BY, Teruya T, Nagai K, Chung UI, Yagasaki K, Woo JT (2011) Harmine promotes osteoblasts differentiation through bone morphogenetic protein signaling. Biochem Biophys Res Commun 409:260–265PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang Y, Xie RL, Croce CM, Stein JL, Lian JB, van Wijnen AJ, Stein GS (2011) A program of microRNAs controls osteogenic lineage progression by targeting transcriptional factor Runx2. Proc Natl Acad Sci USA 108:9863–9868PubMedCrossRefGoogle Scholar
  25. 25.
    Jeong HM, Han EH, Jin YH, Choi YH, Lee KY, Jeong HG (2011) Xanthohumol from the hop plant stimulates osteoblast differentiation by RUNX2 activation. Biochem Biophys Res Commun 409:82–89PubMedCrossRefGoogle Scholar
  26. 26.
    Jonason JH, Xiao G, Zhang M, Xing L, Chen D (2009) Post-translational regulation of Runx2 in bone and cartilage. J Dent Res 88:693–703PubMedCrossRefGoogle Scholar
  27. 27.
    Sundqvist A, Ericsson J (2003) Transcription-dependent degradation controls the stability of the SREBP family of transcription factors. Proc Natl Acad Sci USA 100:13833–13838PubMedCrossRefGoogle Scholar
  28. 28.
    Greenblatt MB, Shim JH, Zou W, Sitara D, Schweitzer M, Hu D, Lotinun S, Sano Y, Baron R, Park JM, Arthur S, Xie M, Schneider MD, Zhai B, Gygi S, Davis R, Glimcher LH (2010) The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest 120:2457–2473PubMedCrossRefGoogle Scholar
  29. 29.
    Park OJ, Kim HJ, Woo KM, Baek JH, Ryoo HM (2010) FGF2-activated ERK mitogen-activated protein kinase enhances Runx2 acetylation and stabilization. J Biol Chem 285:3568–3574PubMedCrossRefGoogle Scholar
  30. 30.
    Jun JH, Yoon WJ, Seo SB, Woo KM, Kim GS, Ryoo HM, Baek JH (2010) BMP2-activated Erk/MAP kinase stabilizes Runx2 by increasing p300 levels and histone acetyltransferase activity. J Biol Chem 285:36410–36419PubMedCrossRefGoogle Scholar
  31. 31.
    Jeon EJ, Lee KY, Choi NS, Lee MH, Kim HN, Jin YH, Ryoo HM, Choi JY, Yoshida M, Nishino N, Oh BC, Lee KS, Lee YH, Bae SC (2006) Bone morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem 281:16502–16511PubMedCrossRefGoogle Scholar
  32. 32.
    Schroeder TM, Westendorf JJ (2005) Histone deacetylase inhibitors promote osteoblast maturation. J Bone Miner Res 20:2254–2263PubMedCrossRefGoogle Scholar
  33. 33.
    Shakibaei M, Shayan P, Busch F, Aldinger C, Buhrmann C, Lueders C, Mobasheri A (2012) Resveratrol mediated modulation of Sirt-1/Runx2 promotes osteogenic differentiation of mesenchymal stem cells: potential role of Runx2 deacetylation. PLoS ONE 7:e35712PubMedCrossRefGoogle Scholar
  34. 34.
    Timmers S, Auwerx J, Schrauwen P (2012) The journey of resveratrol from yeast to human. Aging (Albany NY) 4:146–158Google Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer Japan 2013

Authors and Affiliations

  • Chao-Yang Wang
    • 1
  • Shu-Feng Yang
    • 2
  • Zhong Wang
    • 1
  • Jun-Ming Tan
    • 1
  • Shun-Min Xing
    • 1
  • De-Chun Chen
    • 1
  • Sheng-Ming Xu
    • 3
  • Wen Yuan
    • 3
  1. 1.Department of Orthopaedics98 Hospital of PLAZhejiangChina
  2. 2.Department of Orthopaedics81 Hospital of PLANanjingChina
  3. 3.Department of Orthopaedics, Shanghai Changzheng HospitalSecond Military Medical UniversityShanghaiChina

Personalised recommendations