Journal of Bone and Mineral Metabolism

, Volume 30, Issue 2, pp 125–135

Role of osteoclasts and interleukin-17 in the pathogenesis of rheumatoid arthritis: crucial ‘human osteoclastology’

  • Shigeru Kotake
  • Toru Yago
  • Manabu Kawamoto
  • Yuki Nanke
Review Article

Abstract

Many papers have reported that osteoclasts play an important role in the pathogenesis of rheumatoid arthritis (RA); however, when we started to investigate the pathogenesis of RA, the roles of osteoclasts were not highlighted in RA bone resorption. In recent years, the number of articles on the roles of osteoclasts and interleukin (IL)-17 in the pathogenesis of RA has increased exponentially. In this review article, we describe our articles on the roles of osteoclasts and IL-17 in joint destruction in RA, from 1990 to 2011, and highlight a novel term, ‘human osteoclastology’, which we have used since 2008.

Keywords

Interleukin-17 (IL-17) Osteoclast Osteoclastology Th17 Rheumatoid arthritis 

References

  1. 1.
    Shimizu S, Shiozawa S, Shiozawa K, Imura S, Fujita T (1985) Quantitative histologic studies on the pathogenesis of periarticular osteoporosis in rheumatoid arthritis. Arthritis Rheum 28:25–31PubMedCrossRefGoogle Scholar
  2. 2.
    Firestein GS (1998) Rheumatoid arthritis and pannus. Klippel JH, Dieppe (eds) Rheumatology, 2nd edn. Mosby, London, pp 5.13.1–5.13.24Google Scholar
  3. 3.
    Kotake S, Nanke Y, Yago T, Kawamoto M, Yamanaka H (2009) Human osteoclastogenic T cells and human osteoclastology. EDITORIAL. Arthritis Rheum 60:3158–3163PubMedCrossRefGoogle Scholar
  4. 4.
    Kotake S, Yago T, Kawamoto M, Nanke Y (2010) Effects of NSAIDs on differentiation and function of human and murine osteoclasts —crucial ‘Human Osteoclastology’. Pharmaceuticals 3:1394–1410CrossRefGoogle Scholar
  5. 5.
    Testa NG, Allen TD, Lajtha LG, Onions D, Jarret O (1981) Generation of osteoclasts in vitro. J Cell Sci 47:127–137PubMedGoogle Scholar
  6. 6.
    Ibbotson KJ, Roodman GD, McManus LM, Mundy GR (1984) Identification and characterization of osteoclast-like cells and their progenitors in cultures of feline marrow mononuclear cells. J Cell Biol 99:471–480PubMedCrossRefGoogle Scholar
  7. 7.
    MacDonald BR, Takahashi N, McManus LM, Holahan J, Mundy GR, Roodman GD (1987) Formation of multinucleated cells that respond to osteotropic hormones in long term human bone marrow cultures. Endocrinology 120:2326–2333PubMedCrossRefGoogle Scholar
  8. 8.
    Takahashi N, Yamana H, Yoshiki S, Roodman GD, Mundy GR, Jones SJ, Boyde A, Suda T (1988) Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures. Endocrinology 122:1373–1382PubMedCrossRefGoogle Scholar
  9. 9.
    Hattersley G, Chambers TJ (1989) Calcitonin receptors as markers for osteoclastic differentiation: correlation between generation of bone-resorptive cells and cells that express calcitonin receptors in mouse bone marrow cultures. Endocrinology 125:1606–1612PubMedCrossRefGoogle Scholar
  10. 10.
    Takahashi N, Akatsu T, Udagawa N, Sasaki T, Yamaguchi A, Moseley JM, Martin TJ, Suda T (1988) Osteoblastic cells are involved in osteoclast formation. Endocrinology 123:2600–2602PubMedCrossRefGoogle Scholar
  11. 11.
    Udagawa N, Takahashi N, Akatsu T, Tanaka H, Sasaki T, Nishihara T, Koga T, Martin TJ, Suda T (1990) Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci USA 87:7260–7264PubMedCrossRefGoogle Scholar
  12. 12.
    Suda T, Udagawa N, Nakamura I, Miyaura C, Takahashi N (1995) Modulation of osteoclast differentiation by local factors. Bone 17:87S–91SPubMedCrossRefGoogle Scholar
  13. 13.
    Udagawa N, Kotake S, Kamatani N, Takahashi N, Suda T (2002) The molecular mechanism of osteoclastogenesis in rheumatoid arthritis. Arthritis Res 4:281–289PubMedCrossRefGoogle Scholar
  14. 14.
    Lam J, Nelson CA, Ross FP, Teitelbaum SL, Fremont DH (2001) Crystal structure of the TRANCE/RANKL cytokine reveals determinants of receptor-ligand specificity. J Clin Invest 108:971–979PubMedGoogle Scholar
  15. 15.
    Ochi T, Hakomori S, Adachi M, Owaki H, Okamura M, Ono Y, Yamasaki K, Fujimoto M, Wakitani S, Ono K (1988) The presence of a myeloid cell population showing strong reactivity with monoclonal antibody directed to difucosyl type 2 chain in epiphyseal bone marrow adjacent to joints affected with rheumatoid arthritis (RA) and its absence in the corresponding normal and non-RA bone marrow. J Rheumatol 15:1609–1615PubMedGoogle Scholar
  16. 16.
    Kotake S, Higaki M, Sato K, Himeno S, Morita H, Kim K-J, Nara N, Miyasaka N, Nishioka K, Kashiwazaki S (1992) Detection of myeloid precursors (granulocyte/macrophage colony forming units) in the bone marrow adjacent to rheumatoid arthritis joints. J Rheumatol 19:1511–1516PubMedGoogle Scholar
  17. 17.
    Kotake S, Sato K, Kim K-J, Takahashi N, Udagawa N, Nakamura I, Yamaguchi A, Kishimoto T, Suda T, Kashiwazaki S (1996) Interleukin-6 and soluble interleukin-6 receptors in the synovial fluids from rheumatoid arthritis patients are responsible for osteoclast-like cell formation. J Bone Miner Res 11:88–95PubMedCrossRefGoogle Scholar
  18. 18.
    Tamura T, Udagawa N, Takahashi N, Miyaura C, Tanaka S, Yamada Y, Koishihara Y, Ohsugi Y, Kumaki K, Taga T, Kishimoto T, Suda T (1993) Soluble interleukin-6 receptor triggers osteoclast formation by interleukin 6. Proc Natl Acad Sci USA 90:11924–11928PubMedCrossRefGoogle Scholar
  19. 19.
    Chang JS, Quinn JM, Demaziere A, Bulstrode CJ, Francis MJ, Duthie RB, Athanasou NA (1992) Bone resorption by cells isolated from rheumatoid synovium. Ann Rheum Dis 51:1223–1229PubMedCrossRefGoogle Scholar
  20. 20.
    Goronzy JJ, Weyand CM (2001) Mechanism of joint destruction. In: Klippel JH (ed) Primers on the rheumatic diseases, 12th edn. Arthritis Foundation®, Atlanta pp 215–216Google Scholar
  21. 21.
    Wilkinson LS, Pitsillides AA, Edwards JC (1993) Giant cells in arthritic synovium. Ann Rheum Dis 52:182–184PubMedCrossRefGoogle Scholar
  22. 22.
    Fujikawa Y, Shingu M, Torisu T, Itonaga I, Masumi S (1996) Bone resorption by tartrate-resistant acid phosphatase-positive multinuclear cells isolated from rheumatoid synovium. Br J Rheumatol 35:213–217PubMedCrossRefGoogle Scholar
  23. 23.
    Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, Saito S, Inoue K, Kamatani N, Gillespie MT, Martin TJ, Suda T (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103:1345–1352PubMedCrossRefGoogle Scholar
  24. 24.
    Kwan Tat S, Pelletier JP, Lajeunesse D, Fahmi H, Duval N, Martel-Pelletier J (2008) Differential modulation of RANKL isoforms by human osteoarthritic subchondral bone osteoblasts: influence of osteotropic factors. Bone 43:284–291CrossRefGoogle Scholar
  25. 25.
    Stamp LK, James MJ, Cleland LG (2004) Paracrine upregulation of monocyte cyclooxygenase-2 by mediators produced by T lymphocytes: role of interleukin 17 and interferon-gamma. J Rheumatol 31:1255–1264PubMedGoogle Scholar
  26. 26.
    Stamp LK, Cleland LG, James MJ (2004) Upregulation of synoviocyte COX-2 through interactions with T lymphocytes: role of interleukin 17 and tumor necrosis factor-alpha. J Rheumatol 31:1246–1254PubMedGoogle Scholar
  27. 27.
    Yago T, Nanke Y, Ichikawa N, Kobashigawa T, Mogi M, Kamatani N, Kotake S (2009) IL-17 induces osteoclastogenesis from human monocytes alone in the absence of osteoblasts, which is potently inhibited by anti-TNF-alpha antibody: a novel mechanism of osteoclastogenesis by IL-17. J Cell Biochem 108:947–955PubMedCrossRefGoogle Scholar
  28. 28.
    Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL (2000) TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 106:1481–1488PubMedCrossRefGoogle Scholar
  29. 29.
    Zou W, Hakim I, Tschoep K, Endres S, Bar-Shavit Z (2001) Tumor necrosis factor-alpha mediates RANK ligand stimulation of osteoclast differentiation by an autocrine mechanism. J Cell Biochem 83:70–83PubMedCrossRefGoogle Scholar
  30. 30.
    Miranda-Carus ME, Benito-Miguel M, Balsa A, Cobo-Ibanez T, Perez de Ayala C, Pascual-Salcedo D, Martín-Mola E (2006) Peripheral blood T lymphocytes from patients with early rheumatoid arthritis express RANKL and interleukin-15 on the cell surface and promote osteoclastogenesis in autologous monocytes. Arthritis Rheum 54:1151–1164PubMedCrossRefGoogle Scholar
  31. 31.
    Lubberts E, Koenders MI, Oppers-Walgreen B, van den Bersselaar L, Coenen-de Roo CJ, Joosten LA et al (2004) Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum 50:650–659PubMedCrossRefGoogle Scholar
  32. 32.
    Nakae S, Saijo S, Horai R, Sudo K, Mori S, Iwakura Y (2003) IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc Natl Acad Sci USA 100:5986–5990PubMedCrossRefGoogle Scholar
  33. 33.
    Sarkar S, Tesmer LA, Hindnavis V, Endres JL, Fox DA (2007) Interleukin-17 as a molecular target in immune-mediated arthritis: immunoregulatory properties of genetically modified murine dendritic cells that secrete interleukin-4. Arthritis Rheum 56:89–100PubMedCrossRefGoogle Scholar
  34. 34.
    Raza K, Falciani F, Curnow SJ, Ross EJ, Lee CY, Akbar AN et al (2005) Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin. Arthritis Res Ther 7:R784–R795PubMedCrossRefGoogle Scholar
  35. 35.
    Furuzawa-Carballeda J, Vargas-Rojas MI, Cabral AR (2007) Autoimmune inflammation from the Th17 perspective. Autoimmun Rev 6:169–175PubMedCrossRefGoogle Scholar
  36. 36.
    Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM et al (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132PubMedCrossRefGoogle Scholar
  37. 37.
    Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141PubMedCrossRefGoogle Scholar
  38. 38.
    Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A et al (2007) Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 8:639–646PubMedCrossRefGoogle Scholar
  39. 39.
    Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P et al (2001) Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 194:519–527PubMedCrossRefGoogle Scholar
  40. 40.
    Happel KI, Dubin PJ, Zheng M, Ghilardi N, Lockhart C, Quinton LJ et al (2005) Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J Exp Med 202:761–769PubMedCrossRefGoogle Scholar
  41. 41.
    Rudner XL, Happel KI, Young EA, Shellito JE (2007) Interleukin-23 (IL-23)-IL-17 cytokine axis in murine Pneumocystis carinii infection. Infect Immun 75:3055–3061PubMedCrossRefGoogle Scholar
  42. 42.
    Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y et al (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203:2673–2682PubMedCrossRefGoogle Scholar
  43. 43.
    Hirota K, Hashimoto M, Yoshitomi H, Tanaka S, Nomura T, Yamaguchi T et al (2007) T cell self-reactivity forms a cytokine milieu for spontaneous development of IL-17+ Th cells that cause autoimmune arthritis. J Exp Med 204:41–47PubMedCrossRefGoogle Scholar
  44. 44.
    Genovese M, Van den Bosch F, Roberson S, Bojin S, Biagini I, Ryan P, Sloan-Lancaster J (2010) LY2439821, a Humanized anti-IL-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis. Arthritis Rheum 62:929–939PubMedCrossRefGoogle Scholar
  45. 45.
    Kokkonen H, Söderström I, Rocklöv J, Hallmans G, Lejon K, RantapääDahlqvist S (2010) Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis. Arthritis Rheum 62:383–391PubMedGoogle Scholar
  46. 46.
    Leipe J, Grunke M, Dechant C, Reindl C, Kerzendorf U, Schulze-Koops H, Skapenko A (2010) Role of Th17 cells in human autoimmune arthritis. Arthritis Rheum 62:2876–2885PubMedCrossRefGoogle Scholar
  47. 47.
    Kochi Y, Okada Y, Suzuki A, Ikari K, Terao C et al (2010) A regulatory variant in CCR6 is associated with rheumatoid arthritis susceptibility. Nat Genet 42:515–519Google Scholar
  48. 48.
    Yago T, Nanke Y, Kawamoto M, Furuya T, Kobashigawa T, Kamatani N, Kotake S (2007) IL-23 induces human osteoclastogenesis via IL-17 in vitro, and anti-IL-23 antibody attenuates collagen-induced arthritis in rats. Arthritis Res Ther 9:R96–R107PubMedCrossRefGoogle Scholar
  49. 49.
    Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A et al (1999) Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402:304–309Google Scholar
  50. 50.
    Horwood NJ, Kartsogiannis V, Quinn JM, Romas E, Martin TJ, Gillespie MT (1999) Activated T lymphocytes support osteoclast formation in vitro. Biochem Biophys Res Commun 265:144–150PubMedCrossRefGoogle Scholar
  51. 51.
    Kotake S, Udagawa N, Hakoda M, Mogi M, Yano K, Tsuda E, Takahashi K, Furuya T, Ishiyama S, Kim K-J, Saito S, Nishikawa T, Takahashi N, Togari A, Tomatsu T, Suda T, Kamatani N (2001) Activated human T cells directly induce osteoclastogenesis from human monocytes: possible role of T cells in bone destruction in rheumatoid arthritis patients. Arthritis Rheum 44:1003–1012PubMedCrossRefGoogle Scholar
  52. 52.
    Geusens PP, Landewe RB, Garnero P, Chen D, Dunstan CR, Lems WF et al (2006) The ratio of circulating osteoprotegerin to RANKL in early rheumatoid arthritis predicts later joint destruction. Arthritis Rheum 54:1772–1777PubMedCrossRefGoogle Scholar
  53. 53.
    Mogi M, Otogoto J, Ota N, Togari A (2004) Differential expression of RANKL and osteoprotegerin in gingival crevicular fluid of patients with periodontitis. J Dent Res 83:166–169PubMedCrossRefGoogle Scholar
  54. 54.
    Vernal R, Dutzan N, Hernandez M, Chandia S, Puente J, Leon R et al (2006) High expression levels of receptor activator of nuclear factor-B ligand associated with human chronic periodontitis are mainly secreted by CD4 + T lymphocytes. J Periodontol 77:1772–1780PubMedCrossRefGoogle Scholar
  55. 55.
    Teng YT, Nguyen H, Gao X, Kong YY, Gorczynski RM, Singh B et al (2000) Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection. J Clin Invest 106:1259–1267CrossRefGoogle Scholar
  56. 56.
    Kawai T, Paster BJ, Komatsuzawa H, Ernst CW, Goncalves RB, Sasaki H et al (2007) Cross-reactive adaptive immune response to oral commensal bacteria results in an induction of receptor activator of nuclear factor-κB ligand (RANKL)-dependent periodontal bone resorption in a mouse model. Oral Microbiol Immunol 22:208–215PubMedCrossRefGoogle Scholar
  57. 57.
    Fox SW, Fuller K, Bayley KE, Lean JM, Chambers TJ (2000) TGF-beta 1 and IFN-gamma direct macrophage activation by TNF-alpha to osteoclastic or cytocidal phenotype. J Immunol 165:4957–4963PubMedGoogle Scholar
  58. 58.
    Udagawa N, Horwood NJ, Elliott J, Mackay A, Owens J, Okamura H et al (1997) Interleukin-18 (interferon-gamma-inducing factor) is produced by osteoblasts and acts via granulocyte/macrophage colony-stimulating factor and not via interferon-gamma to inhibit osteoclast formation. J Exp Med 185:1005–1012PubMedCrossRefGoogle Scholar
  59. 59.
    Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K et al (2000) T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408:600–605PubMedCrossRefGoogle Scholar
  60. 60.
    Kotake S, Nanke Y, Mogi M, Kawamoto M, Furuya T, Yago T, Kobashigawa T, Togari A, Kamatani N (2005) IFN-gamma-producing human T cells directly induce osteoclastogenesis from human monocytes via the expression of RANKL. Eur J Immunol 35:3353–3363PubMedCrossRefGoogle Scholar
  61. 61.
    Gao Y, Grassi F, Ryan MR, Terauchi M, Page K, Yang X et al (2007) IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J Clin Invest 117:122–132PubMedCrossRefGoogle Scholar
  62. 62.
    Stashenko P, Goncalves RB, Lipkin B, Ficarelli A, Sasaki H, Campos-Neto A (2007) Th1 immune response promotes severe bone resorption caused by Porphyromonas gingivalis. Am J Pathol 170:203–213PubMedCrossRefGoogle Scholar
  63. 63.
    Rifas L, Weitzmann MN (2009) A novel secreted osteoclastogenic factor of activated T cells (SOFAT) induced osteoclast formation in a RANKL-independent manner. Arthritis Rheum 60:3324–3335PubMedCrossRefGoogle Scholar
  64. 64.
    Kotake S, Nanke Y, Kawamoto M, Yago T, Udagawa N, Ichikawa N, Kobashigawa T, Saito S, Momohara S, Kamatani N, Yamanaka H (2009) T-cell leukemia translocation-associated gene (TCTA) protein is required for human osteoclastogenesis. Bone 45:627–639PubMedCrossRefGoogle Scholar
  65. 65.
    Kotake S, Yago T, Kawamoto M, Nanke Y (2009) The role of T-cell leukemia translocation-associated gene (TCTA) protein in human osteoclastogenesis. Jpn J Clin Immunol 32:466–471CrossRefGoogle Scholar
  66. 66.
    Nanke Y, Kotake S, Ninomiya T, Furuya T, Ozawa H, Kamatani N (2005) Geranylgeranylacetone inhibits formation and function of human osteoclasts and prevents bone loss in tail-suspended rats and ovariectomized rats. Calcif Tissue Int 77:376–385PubMedCrossRefGoogle Scholar
  67. 67.
    Nanke Y, Kawamoto M, Yago T, Chiba J, Yamanaka H, Kotake S (2009) Geranylgeranylacetone, a non-toxic inducer of heat shock protein, induces cell death in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Mod Rheumatol 19:379–383PubMedCrossRefGoogle Scholar
  68. 68.
    Motoyoshi K, Suda T, Kusumoto K, Takaku F, Miura Y (1982) Granulocyte–macrophage colony-stimulating and binding activities of purified human urinary colony-stimulating factor to murine and human bone marrow cells. Blood 60:1378–1386PubMedGoogle Scholar
  69. 69.
    Kanamaru F, Iwai H, Ikeda T, Nakajima A, Ishikawa I, Azuma M (2004) Expression of membrane-bound and soluble receptor activator of NF-kappaB ligand (RANKL) in human T cells. Immunol Lett 94:239–246PubMedCrossRefGoogle Scholar
  70. 70.
    Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA (2001) CD4+ CD25high regulatory cells in human peripheral blood. J Immunol 167:1245–1253PubMedGoogle Scholar
  71. 71.
    Nanke Y, Kotake S, Goto M, Ujihara H, Matsubara M, Kamatani N (2008) Decreased percentages of regulatory T cells in peripheral blood of patients with Behcet’s disease before ocular attack: a possible predictive marker of ocular attack. Mod Rheumatol 18:354–358PubMedCrossRefGoogle Scholar
  72. 72.
    Amadi-Obi A, Yu CR, Liu X, Mahdi RM, Clarke GL, Nussenblatt RB et al (2007) TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1. Nat Med 13:711–718PubMedCrossRefGoogle Scholar
  73. 73.
    Annunziato F, Cosmi L, Liotta F, Maggi E, Romagnani S (2009) Human Th17 cells: are they different from murine Th17 cells? Eur J Immunol 39:637–640PubMedCrossRefGoogle Scholar
  74. 74.
    Itonaga I, Sabokbar A, Neale SD, Athanasou NA (1999) 1, 25-Dihydroxyvitamin D(3) and prostaglandin E(2) act directly on circulating human osteoclast precursors. Biochem Biophys Res Commun 264:590–595PubMedCrossRefGoogle Scholar
  75. 75.
    Take I, Kobayashi Y, Yamamoto Y, Tsuboi H, Ochi T, Uematsu S, Okafuji N, Kurihara S, Udagawa N, Takahashi N (2005) Prostaglandin E2 strongly inhibits human osteoclast formation. Endocrinology 146:5204–5214PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer 2011

Authors and Affiliations

  • Shigeru Kotake
    • 1
  • Toru Yago
    • 1
  • Manabu Kawamoto
    • 1
  • Yuki Nanke
    • 1
  1. 1.Institute of RheumatologyTokyo Women’s Medical UniversityTokyoJapan

Personalised recommendations