Journal of Bone and Mineral Metabolism

, Volume 29, Issue 6, pp 709–716

Identification of genes for bone mineral density variation by computational disease gene identification strategy

  • Gloria H. Y. Li
  • Hong-Wen Deng
  • Annie W. C. Kung
  • Qing-Yang Huang
Original Article


We previously used five freely available bioinformatics tools (Prioritizer, Geneseeker, PROSPECTR and SUSPECTS, Disease Gene Prediction, and Endeavour) to analyze the thirteen well-replicated osteoporosis susceptibility loci and identify a subset of most likely candidate osteoporosis susceptibility genes (Huang et al. in J Hum Genet 53:644–655, 2008). In the current study, we experimentally tested the association between bone mineral density (BMD) and the 9 most likely candidate genes [LAMC2(1q25-q31), MATN3(2p24-p23), ITGAV(2q31-q32), ACVR1(2q23-q24), TDGF1(3p21.31), EGF(4q25), IGF1(12q22-q23), ZIC2(13q32), BMP2(20p12)] which were pinpointed by 4 or more bioinformatics tools. Forty tag SNPs in nine candidate genes were genotyped in a southern Chinese female case–control cohort consisting of 1643 subjects. Single- and multi-marker association analyses were performed using logistic regression analysis implemented by PLINK. Potential transcription factor binding sites were predicted by MatInspector. The strongest association was observed between rs10178256 (MATN3) and trochanter (P < 0.001) and total hip BMD (P = 0.002). The SNP rs6214 (IGF1) showed consistent association with BMD at all the four measured skeletal sites (P = 0.005–0.044). Prediction of transcription factor binding suggested that the minor allele G of rs10178256 might abolish the binding of MESP1 and MESP2 which play vital roles in bone homeostasis, whereas the minor allele G of rs6214 might create an additional binding site for XBP1, a constitutive regulator of endoplasmic reticulum stress response. Our data suggested that variants in MATN3 and IGF1 were involved in BMD regulation in southern Chinese women.


Genetics Osteoporosis Bone mineral density Association MATN3 


  1. 1.
    Abecasis GR, Cookson WO, Cardon LR (2001) The power to detect linkage disequilibrium with quantitative traits in selected samples. Am J Hum Genet 68:1463–1474PubMedCrossRefGoogle Scholar
  2. 2.
    Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, Lennon CJ, Kluger Y, Dynlacht BD (2007) XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol Cell 27:53–66PubMedCrossRefGoogle Scholar
  3. 3.
    Bai S, Kopan R, Zou W, Hilton MJ, Ong CT, Long F, Ross FP, Teitelbaum SL (2008) NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem 283:6509–6518PubMedCrossRefGoogle Scholar
  4. 4.
    Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265PubMedCrossRefGoogle Scholar
  5. 5.
    Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M, Werner T (2005) MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21:2933–2942PubMedCrossRefGoogle Scholar
  6. 6.
    Chlebna-Sokol D, Rusinska A (2001) Serum insulin/like growth factor I, bone mineral density and biochemical markers of bone metabolism in children with idiopathic osteoporosis. Endocr Regul 35:201–208PubMedGoogle Scholar
  7. 7.
    Fukushima H, Nakao A, Okamoto F, Shin M, Kajiya H, Sakano S, Bigas A, Jimi E, Okabe K (2008) The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis. Mol Cell Biol 28:6402–6412PubMedCrossRefGoogle Scholar
  8. 8.
    Hino S, Kondo S, Yoshinaga K, Saito A, Murakami T, Kanemoto S, Sekiya H, Chihara K, Aikawa Y, Hara H, Kudo T, Sekimoto T, Funamoto T, Chosa E, Imaizumi K (2010) Regulation of ER molecular chaperone prevents bone loss in a murine model for osteoporosis. J Bone Miner Metab 28:131–138PubMedCrossRefGoogle Scholar
  9. 9.
    Huang QY, Kung AWC (2006) Genetics of osteoporosis. Mol Genet Metab 88:295–306PubMedCrossRefGoogle Scholar
  10. 10.
    Huang QY, Li GH, Cheung WM, Song YQ, Kung AW (2008) Prediction of osteoporosis candidate genes by computational disease-gene identification strategy. J Hum Genet 53:644–655PubMedCrossRefGoogle Scholar
  11. 11.
    Ichikawa S, Johnson ML, Koller DL, Lai D, Xuei X, Edenberg HJ, Hui SL, Foroud TM, Peacock M, Econs MJ (2006) Polymorphisms in the bone morphogenetic protein 2 (BMP2) gene do not affect bone mineral density in white men or women. Osteoporos Int 17:587–592PubMedCrossRefGoogle Scholar
  12. 12.
    International HapMap Consortium (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861CrossRefGoogle Scholar
  13. 13.
    Jacob AL, Smith C, Partanen J, Ornitz DM (2006) Fibroblast growth factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation. Dev Biol 296:315–328PubMedCrossRefGoogle Scholar
  14. 14.
    Karlsson C, Brantsing C, Egell S, Lindahl A (2008) Notch1, Jagged1, and HES5 are abundantly expressed in osteoarthritis. Cells Tissues Organs 188:287–298PubMedCrossRefGoogle Scholar
  15. 15.
    Liu JM, Zhao HY, Ning G, Chen Y, Zhang LZ, Sun LH, Zhao YJ, Xu MY, Chen JL (2008) IGF-1 as an early marker for low bone mass or osteoporosis in premenopausal and postmenopausal women. J Bone Miner Metab 26:159–164PubMedCrossRefGoogle Scholar
  16. 16.
    Lu X, Su N, Yang J, Huang W, Li C, Zhao L, He Q, Du X, Shen Y, Chen B, Chen L (2009) Fibroblast growth factor receptor 1 regulates the differentiation and activation of osteoclasts through Erk1/2 pathway. Biochem Biophys Res Commun 390:494–499PubMedCrossRefGoogle Scholar
  17. 17.
    Medici M, Meurs JB, Rivadeneira F, Zhao HY, Arp PP, Hofman A, Pols HA, Uitterlinden AG (2006) BMP-2 gene polymorphisms and osteoporosis: the Rotterdam study. J Bone Miner Res 21:845–854PubMedCrossRefGoogle Scholar
  18. 18.
    Ng MY, Sham PC, Paterson AD, Chan V, Kung AW (2006) Effect of environmental factors and gender on the heritability of bone mineral density and bone size. Ann Hum Genet 70:428–438PubMedCrossRefGoogle Scholar
  19. 19.
    Nicolae C, Ko YP, Miosge N, Niehoff A, Studer D, Enggist L, Hunziker EB, Paulsson M, Wagener R, Aszodi A (2007) Abnormal collagen fibrils in cartilage of matrilin-1/matrilin-3-deficient mice. J Biol Chem 282:22163–22175PubMedCrossRefGoogle Scholar
  20. 20.
    Purcell S, Cherny SS, Sham PC (2003) Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19:149–150PubMedCrossRefGoogle Scholar
  21. 21.
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575PubMedCrossRefGoogle Scholar
  22. 22.
    Reneland RH, Mah S, Kammere S, Hoyal CR, Marnellos G, Wilson SG, Sambrook PN, Spector TD, Nelson MR, Braun A (2005) Association between a variation in the phosphodiesterase 4D gene and bone mineral density. BMC Med Genet 6:9PubMedCrossRefGoogle Scholar
  23. 23.
    Report of a WHO Study Group (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organ Tech Rep Ser 843:1–129Google Scholar
  24. 24.
    Rhee EJ, Oh KW, Lee WY, Kim SW, Oh ES, Baek KH, Kang MI, Park CY, Choi MG, Yoo HJ, Park SW (2004) Age, body mass index, current smoking history, and serum insulin-like growth factor-I levels associated with bone mineral density in middle-aged Korean men. J Bone Miner Metab 22:392–398PubMedCrossRefGoogle Scholar
  25. 25.
    Rivadeneira F, Houwing-Duistermaat JJ, Vaessen N, Vergeer-Drop JM, Hofman A, Pols HA, Van Duijn CM, Uitterlinden AG (2003) Association between an insulin-like growth factor I gene promoter polymorphism and bone mineral density in the elderly: the Rotterdam Study. J Clin Endocrinol Metab 88:3878–3884PubMedCrossRefGoogle Scholar
  26. 26.
    Rusinska A, Chlebna-Sokol D (2006) Insulin-like growth factor-I and mineral metabolism markers in children with idiopathic decrease in bone mass. Clin Chim Acta 366:257–263PubMedCrossRefGoogle Scholar
  27. 27.
    Saga Y (1998) Genetic rescue of segmentation defect in MesP2-deficient mice by MesP1 gene replacement. Mech Dev 75:53–66PubMedCrossRefGoogle Scholar
  28. 28.
    Saga Y, Hata N, Koseki H, Taketo MM (1997) Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev 11:1827–1839PubMedCrossRefGoogle Scholar
  29. 29.
    Styrkarsdottir U, Cazier J, Kong A, Rolfsson O, Larsen H, Bjarnadottir E, Johannsdottir VD, Sigurdardottir MS, Bagger Y, Christiansen C, Reynisdottir I, Grant SF, Jonasson K, Frigge ML, Gulcher JR, Sigurdsson G, Stefansson K (2003) Linkage of osteoporosis to chromosome 20p12 and association to BMP2. PLoS Biol 1:E69PubMedCrossRefGoogle Scholar
  30. 30.
    Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, Jonsdottir T, Saemundsdottir J, Center JR, Nguyen TV, Bagger Y, Gulcher JR, Eisman JA, Christiansen C, Sigurdsson G, Kong A, Thorsteinsdottir U, Stefansson K (2008) Multiple genetic loci for bone mineral density and fractures. N Engl J Med 358:2355–2365PubMedCrossRefGoogle Scholar
  31. 31.
    van der Weyden L, Wei L, Luo J, Yang X, Birk DE, Adams DJ, Bradley A, Chen Q (2006) Functional knockout of the matrilin-3 gene causes premature chondrocyte maturation to hypertrophy and increases bone mineral density and osteoarthritis. Am J Pathol 169:515–527PubMedCrossRefGoogle Scholar
  32. 32.
    Xiong DH, Shen H, Zhao LJ, Xiao P, Yang TL, Guo Y, Wang W, Guo YF, Liu YJ, Recker RR, Deng HW (2006) Robust and comprehensive analysis of 20 osteoporosis candidate genes by very high-density single-nucleotide polymorphism screen among 405 white nuclear families identified significant association and gene-gene interaction. J Bone Miner Res 21:1678–1695PubMedCrossRefGoogle Scholar
  33. 33.
    Xiong DH, Liu XG, Guo YF, Tan LJ, Wang L et al (2009) Genome-wide association and follow-up replication studies identified ADAMTS18 and TGFBR3 as bone mass candidate genes in different ethnic groups. Am J Hum Genet 84:388–398PubMedCrossRefGoogle Scholar
  34. 34.
    Zanotti S, Smerdel-Ramoya A, Stadmeyer L, Durant D, Radtke F, Canalis E (2008) Notch inhibits osteoblast differentiation and causes osteopenia. Endocrinology 149:3890–3899PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang P, McGrath B, Li S, Frank A, Zambito F, Reinert J, Gannon M, Ma K, McNaughton K, Cavener DR (2002) The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol Cell Biol 22:3864–3874PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer 2011

Authors and Affiliations

  • Gloria H. Y. Li
    • 1
    • 2
  • Hong-Wen Deng
    • 3
  • Annie W. C. Kung
    • 2
  • Qing-Yang Huang
    • 1
    • 2
  1. 1.Hubei Key Lab of Genetic Regulation and Integrative Biology, College of Life ScienceCentral China Normal UniversityWuhanChina
  2. 2.Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
  3. 3.Departments of Orthopedic Surgery and Basic Medical SciencesUniversity of Missouri-Kansas CityKansas CityUSA

Personalised recommendations