Journal of Bone and Mineral Metabolism

, Volume 29, Issue 5, pp 535–544

Accelerated osteoblast mineralization on a conductive substrate by multiple electrical stimulation

Original Article


One of the major benefits of a conductive PPy-based substrate is that the mediated electrical stimulation (ES) can be a stimulating factor to promote tissue regeneration. We cultured osteoblast-like Saos-2 cells on a conductive substrate made of biodegradable polylactide (95 wt%) and electrically conducting polypyrrole bioactivated with heparin (PPy/HE) (5 wt%). Using multi-well electrical cell culture plates, the effect of multiple ESs on osteoblast mineralization was investigated at various culture times. As ascertained by ARS, CPC and XPS analyses, the ES was able to promote osteoblast adhesion and growth, resulting in significantly higher calcium and phosphate content in the mineral deposition of the electrically stimulated membranes. Morphology, Ca/P ratio and crystalline structure demonstrated that the minerals on the conductive substrate surface were similar to those found on typical hydroxyapatite. ES also significantly upregulated the expression of the osteoblast-specific markers ALP, BMP2, Runx2 and OC. ES through a synthetic conductive polymer substrate therefore represents a vital option to promote bone regeneration.


Scaffold Biodegradable Osteoblasts Bone tissue engineering Electrical stimulation 


  1. 1.
    Shayesteh YS, Eslami B, Dehghan MM, Vaziri H, Alikhassi M, Mangoli A, Khojasteh A (2007) The effect of a constant electrical field on osseointegration after immediate implantation in dog mandibles: a preliminary study. J Prosthodont 16:337–342PubMedCrossRefGoogle Scholar
  2. 2.
    Midura RJ, Ibiwoye MO, Powell KA, Sakai Y, Doehring T, Grabiner MD, Patterson TE, Zborowski M, Wolfman A (2005) Pulsed electromagnetic field treatments enhance the healing of fibular osteotomies. J Orthop Res 23:1035–1046PubMedCrossRefGoogle Scholar
  3. 3.
    Lee YH, Rah JH, Park RW, Park CI (2001) The effect of early therapeutic electrical stimulation on bone mineral density in the paralyzed limbs of the rabbit. Yonsei Med J 42:194–198PubMedGoogle Scholar
  4. 4.
    Schindler K, Elger CE, Lehnertz K (2007) Changes of EEG synchronization during low-frequency electric stimulation of the seizure onset zone. Epilepsy Res 77:108–119CrossRefGoogle Scholar
  5. 5.
    Connolly JF, Hahn H, Jardon OM (1977) The electrical enhancement of periosteal proliferation in normal and delayed fracture healing. Clin Orthop Relat Res 124:97–105PubMedGoogle Scholar
  6. 6.
    Brighton CT, Tadduni GT, Goll SR, Pollack SR (1988) Treatment of denervation/disuse osteoporosis in the rat with a capacitively coupled electrical signal: effects on bone formation and bone resorption. J Orthop Res 6:676–684PubMedCrossRefGoogle Scholar
  7. 7.
    Ogden JA, Southwick WO (1981) Electrical injury involving the immature skeleton. Skeletal Radiol 6:187–192PubMedCrossRefGoogle Scholar
  8. 8.
    Ercan B, Webster TJ (2008) Greater osteoblast proliferation on anodized nanotubular titanium upon electrical stimulation. Int J Nanomed 3:477–485PubMedGoogle Scholar
  9. 9.
    Wiesmann H, Hartig M, Stratmann U, Meyer U, Joos U (2001) Electrical stimulation influences mineral formation of osteoblast-like cells in vitro. Biochim Biophys Acta 1538:28–37PubMedCrossRefGoogle Scholar
  10. 10.
    Hartig M, Joos U, Wiesmann HP (2000) Capacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increase bone extracellular matrix formation in vitro. Eur Biophys J Biophys Lett 29:499–506CrossRefGoogle Scholar
  11. 11.
    Schnoke M, Midura RJ (2007) Pulsed electromagnetic fields rapidly modulate intracellular signaling events in osteoblastic cells: comparison to parathyroid hormone and insulin. J Orthop Res 25:933–940PubMedCrossRefGoogle Scholar
  12. 12.
    Yang Y, Tao CX, Zhao DM, Li F, Zhao WC, Wu H (2010) EMF acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes. Bioelectromagnetics 31:277–285PubMedGoogle Scholar
  13. 13.
    Wang ZY, Clark CC, Brighton CT (2006) Up-regulation of bone morphogenetic proteins in cultured murine bone cells with use of specific electric fields. J Bone Joint Surg Am A 88:1053–1065CrossRefGoogle Scholar
  14. 14.
    Lorich DG, Brighton CT, Gupta R, Corsetti JR, Levine SE, Gelb ID, Seldes R, Pollack SR (1998) Biochemical pathway mediating the response of bone cells to capacitive coupling. Clin Orthop Relat Res 350:246–256PubMedCrossRefGoogle Scholar
  15. 15.
    Shi GX, Rouabhia M, Wang ZX, Dao LH, Zhang Z (2004) A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomaterials 25:2477–2488PubMedCrossRefGoogle Scholar
  16. 16.
    Cullen DK, Patel AR, Doorish JF, Smith DH, Pfister BJ (2008) Developing a tissue-engineered neural-electrical relay using encapsulated neuronal constructs on conducting polymer fibers. J Neural Eng 5:374–384PubMedCrossRefGoogle Scholar
  17. 17.
    Green RA, Lovell NH, Poole-Warren LA (2009) Cell attachment functionality of bioactive conducting polymers for neural interfaces. Biomaterials 30:3637–3644PubMedCrossRefGoogle Scholar
  18. 18.
    Nishizawa M, Nozaki H, Kaji H, Kitazume T, Kobayashi N, Ishibashi T, Abe T (2007) Electrodeposition of anchored polypyrrole film on microelectrodes and stimulation of cultured cardiac myocytes. Biomaterials 28:1480–1485PubMedCrossRefGoogle Scholar
  19. 19.
    Shi GX, Rouabhia M, Meng SY, Zhang Z (2008) Electrical stimulation enhances viability of human cutaneous fibroblasts on conductive biodegradable substrates. J Biomed Mater Res Part A 84:1026–1037CrossRefGoogle Scholar
  20. 20.
    Shastri VP, Rahman N, Martin I, Langer R (1999) Application of conductive polymers in bone regeneration. Biomed Mater Drug Deliv Implant Tissue Eng 550:215–219Google Scholar
  21. 21.
    Wang ZX, Roberge C, Dao LH, Wan Y, Shi GX, Rouabhia M, Guidoin R, Zhang Z (2004) In vivo evaluation of a novel electrically conductive polypyrrole/poly(d, l-lactide) composite and polypyrrole-coated-poly(d, l-lactide-co-glycolide) membranes. J Biomed Mater Res Part A 70A:28–38CrossRefGoogle Scholar
  22. 22.
    Jiang XP, Marois Y, Traore A, Tessier D, Dao LH, Guidoin R, Zhang Z (2002) Tissue reaction to polypyrrole-coated polyester fabrics: an in vivo study in rats. Tissue Eng 8:635–647PubMedCrossRefGoogle Scholar
  23. 23.
    Meng SY, Zhang Z, Rouabhia M (2010) Surfactant-templated crystalline polygon nanoparticles of heterocyclic polypyrrole prepared with Fenton’s reagent. Synth Metals 160:116–122CrossRefGoogle Scholar
  24. 24.
    Meng S, Rouabhia M, Shi G, Zhang Z (2008) Heparin dopant increases the electrical stability, cell adhesion, and growth of conducting polypyrrole/poly(l, l-lactide) composites. J Biomed Mater Res A 87:332–344PubMedGoogle Scholar
  25. 25.
    Stauffer WR, Cui XT (2006) Polypyrrole doped with 2 peptide sequences from laminin. Biomaterials 27:2405–2413PubMedCrossRefGoogle Scholar
  26. 26.
    Bahri R, Saidane-Mosbahi D, Rouabhia M (2010) Candida famata modulates toll-like receptor, beta-defensin, and proinflammatory cytokine expression by normal human epithelial cells. J Cell Physiol 222:209–218PubMedCrossRefGoogle Scholar
  27. 27.
    Desbois C, Karsenty G (1995) Osteocalcin cluster: implications for functional studies. J Cell Biochem 57:379–383PubMedCrossRefGoogle Scholar
  28. 28.
    Wu LN, Ishikawa Y, Sauer GR, Genge BR, Mwale F, Mishima H, Wuthier RE (1995) Morphological and biochemical characterization of mineralizing primary cultures of avian growth plate chondrocytes: evidence for cellular processing of Ca2+ and Pi prior to matrix mineralization. J Cell Biochem 57:218–237PubMedCrossRefGoogle Scholar
  29. 29.
    Benhayoune H, Charlier D, Jallot E, Laquerriere P, Balossier G, Bonhomme P (2001) Evaluation of the Ca/P concentration ratio in hydroxyapatite by STEM-EDXS: influence of the electron irradiation dose and temperature processing. J Phys D Appl Phys 34:141–147CrossRefGoogle Scholar
  30. 30.
    Boskey AL, Roy R (2008) Cell culture systems for studies of bone and tooth mineralization. Chem Rev 108:4716–4733PubMedCrossRefGoogle Scholar
  31. 31.
    Golub EE (2009) Role of matrix vesicles in biomineralization. Biochimica Et Biophysica Acta Gen Subj 1790:1592–1598CrossRefGoogle Scholar
  32. 32.
    Bellows CG, Aubin JE, Heersche JN (1991) Initiation and progression of mineralization of bone nodules formed in vitro: the role of alkaline phosphatase and organic phosphate. Bone Miner 14:27–40PubMedCrossRefGoogle Scholar
  33. 33.
    Gerstenfeld L, Edgar C, Kakar S, Jacobsen K, Einhorn T (2007) Osteogenic growth factors and cytokines and their role in bone repair. Eng Funct Skelet Tissues 3:17–45CrossRefGoogle Scholar
  34. 34.
    Mundy GR (1996) Regulation of bone formation by bone morphogenetic proteins and other growth factors. Clin Orthop Relat Res 324:24–28PubMedCrossRefGoogle Scholar
  35. 35.
    Soltan M, Smiler D, Choi JH (2009) Bone marrow: orchestrated cells, cytokines, and growth factors for bone regeneration. Implant Dent 18:132–141PubMedCrossRefGoogle Scholar
  36. 36.
    Zhuang H, Wang W, Seldes RM, Tahernia AD, Fan H, Brighton CT (1997) Electrical stimulation induces the level of TGF-beta1 mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway. Biochem Biophys Res Commun 237:225–229PubMedCrossRefGoogle Scholar
  37. 37.
    Laflamme C, Rouabhia M (2008) Effect of BMP-2 and BMP-7 homodimers and a mixture of BMP-2/BMP-7 homodimers on osteoblast adhesion and growth following culture on a collagen scaffold. Biomed Mater 3:015008PubMedCrossRefGoogle Scholar
  38. 38.
    Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754PubMedCrossRefGoogle Scholar
  39. 39.
    Lee SH, Shin H (2007) Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev 59:339–359PubMedCrossRefGoogle Scholar
  40. 40.
    Aubin JE (1998) Advances in the osteoblast lineage. Biochem Cell Biol 76:899–910PubMedCrossRefGoogle Scholar
  41. 41.
    Vitale-Brovarone C, Verne E, Robiglio L, Appendino P, Bassi F, Martinasso G, Muzio G, Canuto R (2007) Development of glass-ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation. Acta Biomater 3:199–208PubMedCrossRefGoogle Scholar
  42. 42.
    Horowitz M (2003) Matrix proteins versus cytokines in the regulation of osteoblast function and bone formation. Calcif Tissue Int 72:5–7PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer 2011

Authors and Affiliations

  1. 1.Département de chirurgie, Faculté de médecineUniversité Laval, Centre de recherche de l’Hôpital Saint-François d’Assise, CHUQQuébecCanada
  2. 2.Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Pavillon de médecine dentaireUniversité LavalQuébecCanada

Personalised recommendations