Journal of Bone and Mineral Metabolism

, Volume 29, Issue 3, pp 291–299

Regulation of Tcf7 by Runx2 in chondrocyte maturation and proliferation

  • Masaki Mikasa
  • Satoshi Rokutanda
  • Hisato Komori
  • Kosei Ito
  • Ying Sze Tsang
  • Yuki Date
  • Carolina A. Yoshida
  • Toshihisa Komori
Original Article


Runx2 plays important roles in the regulation of chondrocyte differentiation and proliferation; however, the Runx2 target molecules still remain to be investigated. We searched the genes upregulated by the introduction of Runx2 into Runx2−/− chondrocytes using microarray and found that Tcf7 is upregulated by Runx2. Thus, we examined the functions of Runx2 in the regulation of the Tcf/Lef family of transcription factors. Runx2 induced Tcf7 and Lef1 strongly, but Tcf7l1 and Tcf7l2 only slightly in Runx2−/− chondrocytes; the expressions of Tcf7and Tcf7l2 were reduced in Runx2−/− cartilaginous skeletons and calvaria, and Tcf7 showed a similar expression pattern to Runx2. In reporter assays, Runx2 mildly activated the 8.6 and 1.8 kb Tcf7 promoter constructs. The reporter assays using the deletion constructs of the 1.8-kb fragment showed that the 0.3-kb promoter region is responsible for the Runx2-dependent transcriptional activation. To investigate the function of Tcf7 in skeletal development, we generated dominant-negative (dn) Tcf7 transgenic mice using the Col2a1 promoter. Dn-Tcf7 transgenic embryos showed dwarfism, and mineralization was retarded in limbs, ribs, and vertebrae in a manner dependent on the expression levels of the transgene. In situ hybridization analysis showed that endochondral ossification is retarded in dn-Tcf7 transgenic embryos due to the decelerated chondrocyte maturation. Further, BrdU labeling showed a reduction in chondrocyte proliferation in the proliferating layer of the growth plate in dn-Tcf7 transgenic embryos. These findings indicate that Runx2 regulates chondrocyte maturation and proliferation at least partly through the induction of Tcf7.


Runx2 Tcf7 Lef1 Chondrocyte differentiation Chondrocyte proliferation 


  1. 1.
    Komori T (2005) Regulation of skeletal development by the Runx family of transcription factors. J Cell Biochem 95:445–453PubMedCrossRefGoogle Scholar
  2. 2.
    Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764PubMedCrossRefGoogle Scholar
  3. 3.
    Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771PubMedCrossRefGoogle Scholar
  4. 4.
    Inada M, Yasui T, Nomura S, Miyake S, Deguchi K, Himeno M, Sato M, Yamagiwa H, Kimura T, Yasui N, Ochi T, Endo N, Kitamura Y, Kishimoto T, Komori T (1999) Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn 214:279–290PubMedCrossRefGoogle Scholar
  5. 5.
    Kim IS, Otto F, Zabel B, Mundlos S (1999) Regulation of chondrocyte differentiation by Cbfa1. Mech Dev 80:159–170PubMedCrossRefGoogle Scholar
  6. 6.
    Enomoto H, Enomoto-Iwamoto M, Iwamoto M, Nomura S, Himeno M, Kitamura Y, Kishimoto T, Komori T (2000) Cbfa1 is a positive regulatory factor in chondrocyte maturation. J Biol Chem 275:8695–8702PubMedCrossRefGoogle Scholar
  7. 7.
    Takeda S, Bonnamy JP, Owen MJ, Ducy P, Karsenty G (2001) Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev 15:467–481PubMedCrossRefGoogle Scholar
  8. 8.
    Ueta C, Iwamoto M, Kanatani N, Yoshida CA, Liu Y, Enomoto-Iwamoto M, Ohmori T, Enomoto H, Nakata K, Takada K, Kurisu K, Komori T (2001) Skeletal malformations caused by overexpression of Cbfa1 or its dominant negative form in chondrocytes. J Cell Biol 153:87–100PubMedCrossRefGoogle Scholar
  9. 9.
    Stricker S, Fundele R, Vortkamp A, Mundlos S (2002) Role of Runx genes in chondrocyte differentiation. Dev Biol 245:95–108PubMedCrossRefGoogle Scholar
  10. 10.
    Yoshida CA, Yamamoto H, Fujita T, Furuichi T, Ito K, Inoue K, Yamana K, Zanma A, Takada K, Ito Y, Komori T (2004) Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Dev 18:952–963PubMedCrossRefGoogle Scholar
  11. 11.
    St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13:2072–2086PubMedCrossRefGoogle Scholar
  12. 12.
    Akiyama H, Lyons JP, Mori-Akiyama Y, Yang X, Zhang R, Zhang Z, Deng JM, Taketo MM, Nakamura T, Behringer RR, McCrea PD, de Crombrugghe B (2004) Interactions between Sox9 and β-catenin control chondrocyte differentiation. Genes Dev 18:1072–1087PubMedCrossRefGoogle Scholar
  13. 13.
    Guo X, Day TF, Jiang X, Garrett-Beal L, Topol L, Yang Y (2004) Wnt/b-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev 18:2404–2417PubMedCrossRefGoogle Scholar
  14. 14.
    Hu H, Hilton MJ, Tu X, Yu K, Ornitz DM, Long F (2005) Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132:49–60PubMedCrossRefGoogle Scholar
  15. 15.
    Day TF, Guo X, Garrett-Beal L, Yang Y (2005) Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8:739–750PubMedCrossRefGoogle Scholar
  16. 16.
    Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C (2005) Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 8:727–738PubMedCrossRefGoogle Scholar
  17. 17.
    Tamamura Y, Otani T, Kanatani N, Koyama E, Kitagaki J, Komori T, Yamada Y, Costantini F, Wakisaka S, Pacifici M, Iwamoto M, Enomoto-Iwamoto M (2005) Developmental regulation of Wnt/β-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. J Biol Chem 280:19185–19195PubMedCrossRefGoogle Scholar
  18. 18.
    Enomoto H, Furuichi T, Zanma A, Yamana K, Yoshida C, Sumitani S, Yamamoto H, Enomoto-Iwamoto M, Iwamoto M, Komori T (2004) Runx2 deficiency in chondrocytes causes adipogenic changes in vitro. J Cell Sci 117:417–425PubMedCrossRefGoogle Scholar
  19. 19.
    Enomoto H, Shiojiri S, Hoshi K, Furuichi T, Fukuyama R, Yoshida CA, Kanatani N, Nakamura R, Mizuno A, Zanma A, Yano K, Yasuda H, Higashio K, Takada K, Komori T (2003) Induction of osteoclast differentiation by Runx2 through receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin regulation and partial rescue of osteoclastogenesis in Runx2−/− mice by RANKL transgene. J Biol Chem 278:23971–23977PubMedCrossRefGoogle Scholar
  20. 20.
    Rokutanda S, Fujita T, Kanatani N, Yoshida CA, Komori H, Liu W, Mizuno A, Komori T (2009) Akt regulates skeletal development through GSK3, mTOR, and FoxOs. Dev Biol 328:78–93PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang Y, Yasui N, Ito K, Huang G, Fujii M, Hanai J, Nogami H, Ochi T, Miyazono K, Ito Y (2000) A RUNX2/PEBP2alpha A/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia PNAS. Proc Natl Acad Sci USA 97:10549–10554PubMedCrossRefGoogle Scholar
  22. 22.
    Arce L, Yokoyama NN, Waterman ML (2006) Diversity of LEF/TCF action in development and disease. Oncogene 25:7492–7504PubMedCrossRefGoogle Scholar
  23. 23.
    Glass DA 2nd, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, Taketo MM, Long F, McMahon AP, Lang RA, Karsenty G (2005) Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8:751–764PubMedCrossRefGoogle Scholar
  24. 24.
    Maruyama Z, Yoshida CA, Furuichi T, Amizuka N, Ito M, Fukuyama R, Miyazaki T, Kitaura H, Nakamura K, Fujita T, Kanatani N, Moriishi T, Yamana K, Liu W, Kawaguchi H, Nakamura K, Komori T (2007) Runx2 determines bone maturity and turnover rate in postnatal bone development and is involved in bone loss in estrogen deficiency. Dev Dyn 236:1876–1890PubMedCrossRefGoogle Scholar
  25. 25.
    Hoppler S, Kavanagh CL (2007) Wnt signaling: variety at the core. J Cell Sci 120:385–393PubMedCrossRefGoogle Scholar
  26. 26.
    Komori T (2006) Regulation of osteoblast differentiation by transcription factors. J Cell Biochem 99:1233–1239PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer 2010

Authors and Affiliations

  • Masaki Mikasa
    • 1
  • Satoshi Rokutanda
    • 1
    • 2
  • Hisato Komori
    • 1
  • Kosei Ito
    • 1
  • Ying Sze Tsang
    • 1
  • Yuki Date
    • 1
  • Carolina A. Yoshida
    • 1
  • Toshihisa Komori
    • 1
  1. 1.Department of Cell Biology, Unit of Basic Medical SciencesNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
  2. 2.Department of Oral and Maxillofacial Surgery, Unit of Translational MedicineNagasaki University Graduate School of Biomedical SciencesNagasakiJapan

Personalised recommendations