Advertisement

Journal of Bone and Mineral Metabolism

, Volume 29, Issue 2, pp 236–244 | Cite as

Bone metabolism and the muscle–bone relationship in children, adolescents and young adults with phenylketonuria

  • Piotr AdamczykEmail author
  • Aurelia Morawiec-Knysak
  • Paweł Płudowski
  • Beata Banaszak
  • Jacek Karpe
  • Wojciech Pluskiewicz
Original Article

Abstract

The aim of the study was to assess body composition in subjects with phenylketonuria (PKU). Forty-five patients aged 13.8 ± 5.2 years were evaluated. Among them, 15 patients had not reached sexual maturity, showing normal serum values of phenylalanine (Phe) (subgroup 1), and 30 subjects were sexually mature (Tanner 5 stage), showing either normal serum Phe (18 cases; subgroup 2a) or increased serum Phe (12 cases; subgroup 2b). DXA-assessed spine and total body (TB) measurements [bone mineral density (BMD), bone mineral content (BMC), lean body mass (LBM) and the calculated ratios BMC/LBM] as well as laboratory parameters (serum carboxyterminal telopeptide of type I collagen, bone alkaline phosphatase, osteocalcin, parathormone, calcitonin, total and ionized calcium) were analyzed. Statistically significant differences were revealed between subgroup 1 versus 2a for TB BMC/LBM ratio SD scores and between subgroup 2a versus 2b for TB BMD, spine BMD, TB BMC/LBM ratio and spine BMC/LBM ratio SD scores. Stepwise multiple regression analysis revealed that serum Phe negatively affected bone status. The skeletal status in children with PKU is impaired by the disease. Applying body composition parameters instead of BMD alone may reflect the level of impairment in a new, different way.

Keywords

Phenylketonuria Bone mineral density Laboratory investigations Muscles Children 

References

  1. 1.
    Hill RE (1993) The diagnosis of inborn errors of metabolism by examination of the genotype. Clin Chim Acta 217:3–14PubMedCrossRefGoogle Scholar
  2. 2.
    Allen JR, Humphries IR, Waters DL, Roberts DC, Lipson AH, Howman-Giles RG, Gaskin KJ (1994) Decreased bone mineral density in children with phenylketonuria. Am J Clin Nutr 59:419–422PubMedGoogle Scholar
  3. 3.
    Hillman L, Schlotzhauer C, Lee D, Grasela J, Witter S, Allen S, Hillman R (1996) Decreased bone mineralization in children with phenylketonuria under treatment. Eur J Pediatr 155:S148–S152PubMedCrossRefGoogle Scholar
  4. 4.
    Al-Qadreh A, Schulpis KH, Athanasopoulou H, Mengreli C, Skarpalezou A, Voskaki I (1998) Bone mineral status in children with phenylketonuria under treatment. Acta Paediatr 87:1162–1166PubMedCrossRefGoogle Scholar
  5. 5.
    Pérez-Dueñas B, Cambra FJ, Vilaseca MA, Lambruschini N, Campistol J, Camacho JA (2002) New approach to osteopenia in phenylketonuric patients. Acta Paediatr 91:899–904PubMedCrossRefGoogle Scholar
  6. 6.
    Zeman J, Bayer M, Stepán J (1999) Bone mineral density in patients with phenylketonuria. Acta Paediatr 88:1348–1351PubMedCrossRefGoogle Scholar
  7. 7.
    Barat P, Barthe N, Redonnet-Vernhet I, Parrot F (2002) The impact of the control of serum phenylalanine levels on osteopenia in patients with phenylketonuria. Eur J Pediatr 161:687–688PubMedCrossRefGoogle Scholar
  8. 8.
    Greeves LG, Carson DJ, Magee A, Patterson CC (1997) Fractures and phenylketonuria. Acta Paediatr 86:242–244PubMedCrossRefGoogle Scholar
  9. 9.
    Cowell CT, Lu PW, Lloyd-Jones SA, Briody JN, Allen JR, Humphries IR, Reed E, Knight J, Howman-Giles R, Gaskin K (1995) Volumetric bone mineral density—a potential role in paediatrics. Acta Paediatr Suppl 411:12–16 (discussion 17)PubMedCrossRefGoogle Scholar
  10. 10.
    Ferreti JL, Capozza RF, Cointry GR (1998) Gender related differences in the relationship between densitometric values of whole-body bone mineral content and lean body mass in humans. Bone 22:683–690CrossRefGoogle Scholar
  11. 11.
    Högler W, Briody J, Woodhead HJ, Chan A, Cowell CT (2003) Importance of lean mass in the interpretation of total body densitometry in children and adolescents. J Pediatr 143:81–88PubMedCrossRefGoogle Scholar
  12. 12.
    Crabtree NJ, Kibirige MS, Fordham JN, Banks LM, Muntoni F, Chinn D, Boivin CM, Shaw NJ (2004) The relationship between lean body mass and bone mineral content in paediatric health and disease. Bone 35:965–972PubMedCrossRefGoogle Scholar
  13. 13.
    Płudowski P, Matusik H, Olszaniecka M, Lebiedowski M, Lorenc RS (2005) Reference values for the indicators of skeletal and muscular status of healthy polish children. J Clin Densitom 8:164–177PubMedCrossRefGoogle Scholar
  14. 14.
    Petit MA, Beck TJ, Kontulainen SA (2005) Examining the developing bone: what do we measure and how do we do it? J Musculoskelet Neuronal Interact 5:213–224PubMedGoogle Scholar
  15. 15.
    Frost HM (1990) Structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s law: the bone modeling problem. Anat Rec 226:403–413PubMedCrossRefGoogle Scholar
  16. 16.
    Yannicelli S, Medeiros DM (2002) Elevated plasma phenylalanine concentrations may adversely affect bone status of phenylketonuric mice. J Inherit Metab Dis 25:347–361PubMedCrossRefGoogle Scholar
  17. 17.
    Gnudi S, Ripamonti C, Lisi L, Fini M, Giardino R, Giavaresi G (2002) Proximal femur geometry to detect and distinguish femoral neck fractures from trochanteric fractures in postmenopausal women. Osteoporos Int 13:69–73PubMedCrossRefGoogle Scholar
  18. 18.
    McMurry MP, Chan GM, Leonard CO, Ernst SL (1992) Bone mineral status in children with phenylketonuria—relationship to nutritional intake and phenylalanine control. Am J Clin Nutr 55:997–1004PubMedGoogle Scholar
  19. 19.
    Płudowski P, Karczmarewicz E, Socha J, Matusik H, Syczewska M, Lorenc RS (2007) Skeletal and muscular status in juveniles with GFD treated clinical and newly diagnosed atypical celiac disease—preliminary data. J Clin Densitom 10:76–85PubMedCrossRefGoogle Scholar
  20. 20.
    Płudowski P, Lebiedowski M, Olszaniecka M, Marowska J, Matusik H, Lorenc RS (2006) Idiopathic juvenile osteoporosis—an analysis of muscle–bone relationship. Osteoporos Int 17:1681–1690PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer 2010

Authors and Affiliations

  • Piotr Adamczyk
    • 1
    Email author
  • Aurelia Morawiec-Knysak
    • 1
  • Paweł Płudowski
    • 2
  • Beata Banaszak
    • 1
  • Jacek Karpe
    • 3
  • Wojciech Pluskiewicz
    • 4
  1. 1.Department and Clinic of Pediatrics in ZabrzeMedical University of SilesiaZabrzePoland
  2. 2.Department of Biochemistry and Experimental MedicineThe Children’s Memorial Health InstituteWarsawPoland
  3. 3.Department of Anesthesiology and Intensive Care in ZabrzeMedical University of SilesiaKatowicePoland
  4. 4.Metabolic Bone Diseases Unit in Zabrze, Department and Clinic of Internal Diseases, Diabetology and NephrologyMedical University of SilesiaKatowicePoland

Personalised recommendations