Journal of Bone and Mineral Metabolism

, Volume 28, Issue 6, pp 713–718 | Cite as

Insufficient bilateral femoral subtrochanteric fractures in a patient receiving imatinib mesylate

  • Kyu-Hyun Yang
  • Si-Young Park
  • Sang-Won Park
  • Soon-Hyuck Lee
  • Seung-Beom Han
  • Woong-Kyo Jung
  • Suk-Jin Kim
Case Report


We present a case of insufficient bilateral femoral subtrochanteric fractures in a patient who was treated with imatinib mesylate, an anticancer drug, for 1 year after a diagnosis of chronic myelogenous leukemia (CML). A 60-year-old woman presented with bilateral thigh pain for 6 months. A plain radiograph revealed bilateral progressive insufficient fractures on the subtrochanteric areas of the femurs. MRI of the femurs revealed incomplete stress fractures and no evidence of bone metastasis on either femur. Bone densitometry showed normal T-scores around the hip joint and spine. The patient had normal serum levels of calcium, vitamin D derivatives, and thyroid hormones. Serum phosphate levels were decreased, and parathyroid hormone levels were increased. Serum osteocalcin and urinary N-telopeptide of collagen cross-links (NTx) were both decreased. A bone biopsy demonstrated normocellular marrow without leukemic cells. A histomorphometric evaluation of her bones revealed reduced bone turnover despite secondary hyperparathyroidism. The serum markers for bone metabolism and histomorphometric evaluations in this patient suggest that the drug may have an effect on bone metabolism. These effects could be seen for both bone formation and resorption: this could result in impaired bone mineralization, a severely suppressed bone turnover rate, insufficient fractures, and bone necrosis, which are sometimes seen with long-term use of bisphosphonates. To our knowledge, this is the first case of an insufficient bilateral femoral shaft fracture that is potentially related to the use of imatinib mesylate in a patient with CML. Careful examination of bone metabolism should be performed in patients with CML because imatinib mesylate treatment is a lifelong process.


Insufficient fracture Femur Imanitib mesylate Bone turnover 


  1. 1.
    Savage DG, Antman KH (2002) Imatinib mesylate: a new oral targeted therapy. N Engl J Med 346:683–693CrossRefPubMedGoogle Scholar
  2. 2.
    Druker BJ (2004) Imatinib as a paradigm of targeted therapies. Adv Cancer Res 91:1–30CrossRefPubMedGoogle Scholar
  3. 3.
    Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037CrossRefPubMedGoogle Scholar
  4. 4.
    Berman E, Nicolaides M, Maki RG, Fleisher M, Chanel S, Scheu K, Wilson BA, Heller G, Sauter NP (2006) Altered bone and mineral metabolism in patients receiving imatinib mesylate. N Engl J Med 354:2006–2013CrossRefPubMedGoogle Scholar
  5. 5.
    Grey A, O’Sullivan S, Reid IR, Browett P (2006) Imatinib mesylate, increased bone formation, and secondary hyperparathyroidism. N Engl J Med 355:2494–2495CrossRefPubMedGoogle Scholar
  6. 6.
    Zerwekh JE, Antich PP, Sakhaee K, Prior J, Gonzales J, Gottschalk F, Pak CY (1992) Lack of deleterious effect of slow-release sodium fluoride treatment on cortical bone histology and quality in osteoporotic patients. Bone Miner 18:65–76CrossRefPubMedGoogle Scholar
  7. 7.
    Recker RR, Kimmel DB, Parfitt AM, Davies KM, Keshawarz N, Hinders S (1988) Static and tetracycline-based bone histomorphometric data from 34 normal postmenopausal females. J Bone Miner Res 3:133–144CrossRefPubMedGoogle Scholar
  8. 8.
    Coe JD, Murphy WA, Whyte MP (1986) Management of femoral fractures and pseudofractures in adult hypophosphatasia. J Bone Joint Surg Am 68:981–990PubMedGoogle Scholar
  9. 9.
    Somford MP, Draijer FW, Thomassen BJ, Chavassieux PM, Boivin G, Papapoulos SE (2009) Bilateral fractures of the femur diaphysis in a patient with rheumatoid arthritis on long-term treatment with alendronate: clues to the mechanism of increased bone fragility. J Bone Miner Res 24:1736–1740CrossRefPubMedGoogle Scholar
  10. 10.
    Targownik LE, Lix LM, Metge CJ, Prior HJ, Leung S, Leslie WD (2008) Use of proton pump inhibitors and risk of osteoporosis-related fractures. Can Med Assoc J 179:319–326CrossRefGoogle Scholar
  11. 11.
    Kanis JA, Johansson H, Oden A, Johnell O, de Laet C, Melton IL, Tenenhouse A, Reeve J, Silman AJ, Pols HA, Eisman JA, McCloskey EV, Mellstrom D (2004) A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res 19:893–899CrossRefPubMedGoogle Scholar
  12. 12.
    Odvina CV, Zerwekh JE, Rao DS, Maalouf N, Gottschalk FA, Pak CY (2005) Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab 90:1294–1301CrossRefPubMedGoogle Scholar
  13. 13.
    Mashiba T, Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB (2000) Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res 15:613–620CrossRefPubMedGoogle Scholar
  14. 14.
    Chapurlat RD, Arlot M, Burt-Pichat B, Chavassieux P, Roux JP, Portero-Muzy N, Delmas PD (2007) Microcrack frequency and bone remodeling in postmenopausal osteoporotic women on long-term bisphosphonates: a bone biopsy study. J Bone Miner Res 22:1502–1509CrossRefPubMedGoogle Scholar
  15. 15.
    Breccia M, Alimena G (2009) The metabolic consequences of imatinib mesylate: changes on glucose, lypidic and bone metabolism. Leuk Res 33:871–875CrossRefPubMedGoogle Scholar
  16. 16.
    Dewar AL, Farrugia AN, Condina MR, Bik To L, Hughes TP, Vernon-Roberts B, Zannettino AC (2006) Imatinib as a potential antiresorptive therapy for bone disease. Blood 107:4334–4337CrossRefPubMedGoogle Scholar
  17. 17.
    Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508CrossRefPubMedGoogle Scholar
  18. 18.
    Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW Jr, Ahmed-Ansari A, Sell KW, Pollard JW, Stanley ER (1990) Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci USA 87:4828–4832CrossRefPubMedGoogle Scholar
  19. 19.
    Looker AC, Bauer DC, Chesnut CH 3rd, Gundberg CM, Hochberg MC, Klee G, Kleerekoper M, Watts NB, Bell NH (2000) Clinical use of biochemical markers of bone remodeling: current status and future directions. Osteoporos Int 11:467–480CrossRefPubMedGoogle Scholar
  20. 20.
    Rehman MT, Hoyland JA, Denton J, Freemont AJ (1994) Age related histomorphometric changes in bone in normal British men and women. J Clin Pathol 47:529–534CrossRefPubMedGoogle Scholar
  21. 21.
    Chavassieux PM, Arlot ME, Reda C, Wei L, Yates AJ, Meunier PJ (1997) Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis. J Clin Invest 100:1475–1480CrossRefPubMedGoogle Scholar
  22. 22.
    Goh SK, Yang KY, Koh JS, Wong MK, Chua SY, Chua DT, Howe TS (2007) Subtrochanteric insufficiency fractures in patients on alendronate therapy: a caution. J Bone Joint Surg Br 89:349–353CrossRefPubMedGoogle Scholar
  23. 23.
    Capeci CM, Tejwani NC (2009) Bilateral low-energy simultaneous or sequential femoral fractures in patients on long-term alendronate therapy. J Bone Joint Surg Am 91:2556–2561CrossRefPubMedGoogle Scholar
  24. 24.
    Glorieux FH, Travers R, Taylor A, Bowen JR, Rauch F, Norman M, Parfitt AM (2000) Normative data for iliac bone histomorphometry in growing children. Bone (NY) 26:103–109Google Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer 2010

Authors and Affiliations

  • Kyu-Hyun Yang
    • 1
  • Si-Young Park
    • 2
  • Sang-Won Park
    • 2
  • Soon-Hyuck Lee
    • 2
  • Seung-Beom Han
    • 2
  • Woong-Kyo Jung
    • 2
  • Suk-Jin Kim
    • 3
  1. 1.Department of Orthopaedic SurgeryYonsei Univerisity, College of MedicineSeoulKorea
  2. 2.Department of Orthopaedic SurgeryKorea University College of Medicine, Anam HospitalSeoulKorea
  3. 3.Department of Internal MedicineSungkyunkwan University, College of MedicineSeoulKorea

Personalised recommendations