Journal of Bone and Mineral Metabolism

, Volume 28, Issue 6, pp 696–705

Common polymorphisms rather than rare genetic variants of the Runx2 gene are associated with femoral neck BMD in Spanish women

  • Begoña Pineda
  • Carlos Hermenegildo
  • Paz Laporta
  • Juan J. Tarín
  • Antonio Cano
  • Miguel Ángel García-Pérez
Original Article


RUNX2 is a transcription factor essential for osteoblast differentiation and skeletal morphogenesis. Its mutation creates cleidocranial dysplasia (CCD), a disorder characterized by skeletal abnormalities and bone mineral density (BMD) alterations. The purpose of the present study has been to clarify whether polymorphisms affecting this gene could be associated with changes in BMD in women. To that end, we performed an association study of BMD values from 776 women with two single nucleotide polymorphisms (SNPs) located at P2 promoter (–1025 T>C) and at exon 2 (+198 G>A), and with a deletion polymorphism (17Ala>11Ala), also located at exon 2. We found an association of –1025 T>C SNP with femoral neck BMD (FN-BMD), being the women of TC/CC genotype who have higher BMD than women of TT genotype (P = 0.006). This association was independent of age, weight, menopausal status, or hormone replacement therapy (HRT) use as shown by regression analysis. When women of highest versus lowest quartile of BMD were compared, this association became more evident (P = 0.002), extending also to +198 G>A SNP (GA/AA women with higher FN-BMD; P < 0.05). In addition, we describe herein three novel rare variants in the polyglutamine domain of RUNX2 protein: an in-frame insertion and two deletions in exon 2, resulting in the insertions of 7 and deletions of 7 and 5 glutamines, respectively. These variants do not produce CCD, increased frequency of bone fracture, or BMD alterations. In conclusion, common polymorphisms in Runx2 are associated with FN-BMD. Nevertheless, rare variants that modify the polyglutamine domain of RUNX2 neither have any effect on BMD nor produce the CCD phenotype. These results underscore the significance of polymorphisms in the 5′-region of Runx2 in the determination of FN-BMD.


Osteoporosis RunxBone mineral density Association Alleles 


  1. 1.
    Kanis JA, Burlet N, Cooper C, Delmas PD, Reginster JY, Borgstrom F, Rizzoli R (2008) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 19:399–428CrossRefPubMedGoogle Scholar
  2. 2.
    Ralston SH, de Crombrugghe B (2006) Genetic regulation of bone mass and susceptibility to osteoporosis. Genes Dev 20:2492–2506CrossRefPubMedGoogle Scholar
  3. 3.
    Duncan EL, Brown MA (2008) Genetic studies in osteoporosis—the end of the beginning. Arthritis Res Ther 10:214CrossRefPubMedGoogle Scholar
  4. 4.
    Videman T, Levalahti E, Battie MC, Simonen R, Vanninen E, Kaprio J (2007) Heritability of BMD of femoral neck and lumbar spine: a multivariate twin study of Finnish men. J Bone Miner Res 22:1455–1462CrossRefPubMedGoogle Scholar
  5. 5.
    Cauley JA, Hochberg MC, Lui LY, Palermo L, Ensrud KE, Hillier TA, Nevitt MC, Cummings SR (2007) Long-term risk of incident vertebral fractures. JAMA 298:2761–2767CrossRefPubMedGoogle Scholar
  6. 6.
    Kanis JA, Borgstrom F, De Laet C, Johansson H, Johnell O, Jonsson B, Oden A, Zethraeus N, Pfleger B, Khaltaev N (2005) Assessment of fracture risk. Osteoporos Int 16:581–589CrossRefPubMedGoogle Scholar
  7. 7.
    Kanis JA, Oden A, Johnell O, Johansson H, De Laet C et al (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18:1033–1046CrossRefPubMedGoogle Scholar
  8. 8.
    Richards JB, Rivadeneira F, Inouye M, Pastinen TM, Soranzo N et al (2008) Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371:1505–1512CrossRefPubMedGoogle Scholar
  9. 9.
    Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, Jonsdottir T, Saemundsdottir J, Center JR, Nguyen TV, Bagger Y, Gulcher JR, Eisman JA, Christiansen C, Sigurdsson G, Kong A, Thorsteinsdottir U, Stefansson K (2008) Multiple genetic loci for bone mineral density and fractures. N Engl J Med 358:2355–2365CrossRefPubMedGoogle Scholar
  10. 10.
    Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, Jonsdottir T, Saemundsdottir J, Snorradottir S, Center JR, Nguyen TV, Alexandersen P, Gulcher JR, Eisman JA, Christiansen C, Sigurdsson G, Kong A, Thorsteinsdottir U, Stefansson K (2009) New sequence variants associated with bone mineral density. Nat Genet 41:15–17CrossRefPubMedGoogle Scholar
  11. 11.
    Uitterlinden AG, van Meurs JB, Rivadeneira F, Pols HA (2006) Identifying genetic risk factors for osteoporosis. J Musculoskelet Neuronal Interact 6:16–26PubMedGoogle Scholar
  12. 12.
    Geoffroy V, Corral DA, Zhou L, Lee B, Karsenty G (1998) Genomic organization, expression of the human CBFA1 gene, and evidence for an alternative splicing event affecting protein function. Mamm Genome 9:54–57CrossRefPubMedGoogle Scholar
  13. 13.
    Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, Lindhout D, Cole WG, Henn W, Knoll JH, Owen MJ, Mertelsmann R, Zabel BU, Olsen BR (1997) Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89:773–779CrossRefPubMedGoogle Scholar
  14. 14.
    Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764CrossRefPubMedGoogle Scholar
  15. 15.
    Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771CrossRefPubMedGoogle Scholar
  16. 16.
    Otto F, Kanegane H, Mundlos S (2002) Mutations in the RUNX2 gene in patients with cleidocranial dysplasia. Hum Mutat 19:209–216CrossRefPubMedGoogle Scholar
  17. 17.
    Zhou G, Chen Y, Zhou L, Thirunavukkarasu K, Hecht J, Chitayat D, Gelb BD, Pirinen S, Berry SA, Greenberg CR, Karsenty G, Lee B (1999) CBFA1 mutation analysis and functional correlation with phenotypic variability in cleidocranial dysplasia. Hum Mol Genet 8:2311–2316CrossRefPubMedGoogle Scholar
  18. 18.
    Vaughan T, Pasco JA, Kotowicz MA, Nicholson GC, Morrison NA (2002) Alleles of RUNX2/CBFA1 gene are associated with differences in bone mineral density and risk of fracture. J Bone Miner Res 17:1527–1534CrossRefPubMedGoogle Scholar
  19. 19.
    Vaughan T, Reid DM, Morrison NA, Ralston SH (2004) RUNX2 alleles associated with BMD in Scottish women: interaction of RUNX2 alleles with menopausal status and body mass index. Bone (NY) 34:1029–1036Google Scholar
  20. 20.
    Bustamante M, Nogues X, Agueda L, Jurado S, Wesselius A, Caceres E, Carreras R, Ciria M, Mellibovsky L, Balcells S, Diez-Perez A, Grinberg D (2007) Promoter 2–1025 T/C polymorphism in the RUNX2 gene is associated with femoral neck BMD in Spanish postmenopausal women. Calcif Tissue Int 81:327–332CrossRefPubMedGoogle Scholar
  21. 21.
    Pineda B, Laporta P, Hermenegildo C, Cano A, Garcia-Perez MA (2008) A C>T polymorphism located at position –1 of the Kozak sequence of CD40 gene is associated with low bone mass in Spanish postmenopausal women. Osteoporos Int 19:1147–1152CrossRefPubMedGoogle Scholar
  22. 22.
    Pineda B, Laporta P, Cano A, Garcia-Perez MA (2008) The Asn19Lys substitution in the osteoclast inhibitory lectin (OCIL) gene is associated with a reduction of bone mineral density in postmenopausal women. Calcif Tissue Int 82:348–353CrossRefPubMedGoogle Scholar
  23. 23.
    Hui SL, Gao S, Zhou XH, Johnston CC Jr, Lu Y, Gluer CC, Grampp S, Genant H (1997) Universal standardization of bone density measurements: a method with optimal properties for calibration among several instruments. J Bone Miner Res 12:1463–1470CrossRefPubMedGoogle Scholar
  24. 24.
    Lu Y, Fuerst T, Hui S, Genant HK (2001) Standardization of bone mineral density at femoral neck, trochanter and Ward’s triangle. Osteoporos Int 12:438–444CrossRefPubMedGoogle Scholar
  25. 25.
    Shui C, Spelsberg TC, Riggs BL, Khosla S (2003) Changes in Runx2/Cbfa1 expression and activity during osteoblastic differentiation of human bone marrow stromal cells. J Bone Miner Res 18:213–221CrossRefPubMedGoogle Scholar
  26. 26.
    Doecke JD, Day CJ, Stephens AS, Carter SL, van Daal A, Kotowicz MA, Nicholson GC, Morrison NA (2006) Association of functionally different RUNX2 P2 promoter alleles with BMD. J Bone Miner Res 21:265–273CrossRefPubMedGoogle Scholar
  27. 27.
    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  28. 28.
    Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265CrossRefPubMedGoogle Scholar
  29. 29.
    Sole X, Guino E, Valls J, Iniesta R, Moreno V (2006) SNPStats: a web tool for the analysis of association studies. Bioinformatics 22:1928–1929CrossRefPubMedGoogle Scholar
  30. 30.
    Gauderman WJ (2002) Sample size requirements for association studies of gene–gene interaction. Am J Epidemiol 155:478–484CrossRefPubMedGoogle Scholar
  31. 31.
    Lee HJ, Koh JM, Hwang JY, Choi KY, Lee SH, Park EK, Kim TH, Han BG, Kim GS, Kim SY, Lee JY (2009) Association of a RUNX2 promoter polymorphism with bone mineral density in postmenopausal Korean women. Calcif Tissue Int 84:439–445CrossRefPubMedGoogle Scholar
  32. 32.
    Melton LJ III, Khosla S, Atkinson EJ, O’Fallon WM, Riggs BL (1997) Relationship of bone turnover to bone density and fractures. J Bone Miner Res 12:1083–1091CrossRefPubMedGoogle Scholar
  33. 33.
    Lips P, Duong T, Oleksik A, Black D, Cummings S, Cox D, Nickelsen T (2001) A global study of vitamin D status and parathyroid function in postmenopausal women with osteoporosis: baseline data from the multiple outcomes of raloxifene evaluation clinical trial. J Clin Endocrinol Metab 86:1212–1221CrossRefPubMedGoogle Scholar
  34. 34.
    Garnero P, Sornay-Rendu E, Claustrat B, Delmas PD (2000) Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: the OFELY study. J Bone Miner Res 15:1526–1536CrossRefPubMedGoogle Scholar
  35. 35.
    Ermakov S, Malkin I, Keter M, Kobyliansky E, Livshits G (2008) Family-based association study of polymorphisms in the RUNX2 locus with hand bone length and hand BMD. Ann Hum Genet 72:510–518CrossRefPubMedGoogle Scholar
  36. 36.
    Ermakov S, Malkin I, Kobyliansky E, Livshits G (2006) Variation in femoral length is associated with polymorphisms in RUNX2 gene. Bone (NY) 38:199–205Google Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer 2010

Authors and Affiliations

  • Begoña Pineda
    • 1
  • Carlos Hermenegildo
    • 2
  • Paz Laporta
    • 3
  • Juan J. Tarín
    • 4
  • Antonio Cano
    • 5
  • Miguel Ángel García-Pérez
    • 1
  1. 1.Research FoundationHospital Clínico UniversitarioValenciaSpain
  2. 2.Department of PhysiologyUniversity of ValenciaValenciaSpain
  3. 3.Clinical Biochemistry ServiceHospital Clínico UniversitarioValenciaSpain
  4. 4.Department of Functional Biology and Physical AnthropologyUniversity of ValenciaValenciaSpain
  5. 5.Department of Pediatrics, Obstetrics and GynecologyUniversity of ValenciaValenciaSpain

Personalised recommendations