Journal of Bone and Mineral Metabolism

, Volume 28, Issue 4, pp 456–467 | Cite as

Cortical and trabecular bone microarchitecture and turnover in alcohol-induced chronic pancreatitis: a histomorphometric study

  • Christine M. Schnitzler
  • Julia M. Mesquita
  • Roy Shires
Original Article

Abstract

Alcohol-induced chronic pancreatitis is associated with bone loss, but bone histomorphometric data describing the mechanism of cortical (Ct) and trabecular (Tb) bone loss are scarce. In this case-control study, we investigated 13 black male patients aged 41.2 ± 8.9 years with alcohol-induced chronic pancreatitis by routine iliac crest cortical and trabecular histomorphometry and by biochemistry relevant to bone, liver function, and iron overload. Patients showed lower values for Ct thickness (P = 0.018), endocortical (Ec) wall thickness (P = 0.0002), Tb bone volume (0.019), Tb thickness (0.001), Tb wall thickness (P < 0.0001), Ec osteoid thickness (P = 0.001), Ec mineral apposition rate (P = 0.011), and Ec bone formation rate (P = 0.035). Ec eroded surface (P = 0.004) was elevated compared to controls. Tb osteoid thickness (P = 0.14) and Tb mineral apposition rate (P = 0.195) tended to be lower than in controls. Levels of 25-hydroxyvitamin D (P < 0.005), serum magnesium (P = 0.02), and ascorbic acid (P = 0.049) were lower and urine calcium/creatinine ratios higher than in controls. Alkaline phosphatase and gamma-glutamyl transpeptidase (GGT) were negatively correlated but iron markers were positively correlated with bone structural and formation variables. The histomorphometric data were found to be consistent with alcohol bone disease. Osteomalacia was not a feature. Secondary pathogenetic factors were liver disease, hypovitaminosis D and C, diabetes mellitus, and possibly chronic pancreatitis.

Keywords

Alcohol Chronic pancreatitis Cortical bone Trabecular bone Histomorphometry 

Notes

Acknowledgments

This study was funded by the Medical Research Council of South Africa, and the University of the Witwatersrand, Johannesburg, South Africa.

Conflict of interest statement

None.

References

  1. 1.
    Mann STW, Stracke H, Lange U, Klör HU, Teichmann J (2003) Alterations of bone mineral density and bone metabolism in patients with various grades of chronic pancreatitis. Metabolism 52:579–585CrossRefPubMedGoogle Scholar
  2. 2.
    Segal I, Lerios M, MacPhail AP, Di Bisceglie AM, Grieve T (1988) Genesis of chronic pancreatitis in the South African black population. S Afr Med J 74:385–386PubMedGoogle Scholar
  3. 3.
    Nair RJ, Lawler L, Miller WR (2007) Chronic pancreatitis. Am Fam Physician 76:1679–1688PubMedGoogle Scholar
  4. 4.
    Haaber AB, Rosenfalck AM, Hansen B, Hilsted J, Larsen S (2000) Bone mineral metabolism, bone mineral density, and body composition in patients with chronic pancreatitis and pancreatic exocrine insufficiency. Int J Pancreatol 27:21–27CrossRefPubMedGoogle Scholar
  5. 5.
    Arlot ME, Bonjean M, Chavassieux PM, Meunier PJ (1983) Bone histology in adults with aseptic necrosis. J Bone Joint Surg (Am) 65:1319–1327Google Scholar
  6. 6.
    Turner RT, Kidder LS, Kennedy A, Evans GL, Sibonga JD (2001) Moderate alcohol consumption suppresses bone turnover in adult female rats. J Bone Miner Res 16:589–594CrossRefPubMedGoogle Scholar
  7. 7.
    Seeman E (1996) Nutrition and risk for osteoporosis. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. Academic Press, San Diego, pp 577–597Google Scholar
  8. 8.
    Crilly RG, Anderson C, Hogan D, Delaquerrière-Richardson L (1988) Bone histomorphometry, bone mass, and related parameters in alcoholic males. Calcif Tissue Int 43:269–276CrossRefPubMedGoogle Scholar
  9. 9.
    Chappard D, Plantard B, Petitjean M, Alexandre C, Riffat G (1991) Alcoholic cirrhosis and osteoporosis in men: a light and scanning microscopy study. J Stud Alcohol 52:269–274PubMedGoogle Scholar
  10. 10.
    Owor R (1972) Quantitative estimation of bone mass in Africans with particular reference to bone changes in chronic pancreatic disease. East Afr Med J 49:860–867PubMedGoogle Scholar
  11. 11.
    Frost HM (1983) Bone histomorphometry: choice of marking agent and labeling schedule. In: Recker RR (ed) Bone histomorphometry: techniques and interpretation. CRC Press, Boca Raton, pp 37–52Google Scholar
  12. 12.
    Schnitzler CM, Pettifor JM, Mesquita JM, Bird MDT, Schnaid E, Smyth AE (1990) Histomorphometry of iliac crest bone in 346 normal black and white South African adults. Bone Miner 10:183–199CrossRefPubMedGoogle Scholar
  13. 13.
    Schnitzler CM, Mesquita JM (2006) Cortical bone histomorphometry of the iliac crest in normal black and white South African adults. Calcif Tissue Int 79:373–382CrossRefPubMedGoogle Scholar
  14. 14.
    Melsen F, Mosekilde L (1981) The role of bone biopsy in the diagnosis of metabolic bone disease. Orthop Clin N Am 12:571–602Google Scholar
  15. 15.
    Malluche HH, Meyer W, Sherman D, Massry SC (1982) Quantitative bone histology in 84 normal American subjects. Calcif Tissue Int 34:449–455CrossRefPubMedGoogle Scholar
  16. 16.
    Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols and units. J Bone Miner Res 2:595–610CrossRefPubMedGoogle Scholar
  17. 17.
    Schnitzler CM, MacPhail AP, Shires R, Schnaid E, Mesquita JM, Robson HJ (1994) Osteoporosis in African hemosiderosis: role of alcohol and iron. J Bone Miner Res 9:1865–1873CrossRefPubMedGoogle Scholar
  18. 18.
    Gibson SLM, Moore FML, Goldberg A (1966) Measurement of leucocyte ascorbic acid. BMJ 1:1152–1153CrossRefPubMedGoogle Scholar
  19. 19.
    International Committee for Standardization in Haematology (1978) Recommendations for measurement of serum iron in human blood. Br J Haematol 38:291–294CrossRefGoogle Scholar
  20. 20.
    International Committee for Standardization in Haematology (1978) The measurement of total and unsaturated iron-binding capacity in serum. Br J Haematol 38:281–287CrossRefGoogle Scholar
  21. 21.
    Conradie JD, Mbhele BE (1980) Quantitation of serum ferritin by enzyme linked immunosorbent assay (ELISA). S Afr Med J 57:282–287PubMedGoogle Scholar
  22. 22.
    Daniels ED, Pettifor JM, Schnitzler CM, Moodley GP, Zachen D (1979) Differences in mineral homeostasis, volumetric bone mass and femoral neck axis length in black and white South African women. Osteoporosis Int 7:105–112CrossRefGoogle Scholar
  23. 23.
    Schnitzler CM, Menashe L, Sutton CG, Sweet MBE (1988) Serum biochemical and haematological markers of alcohol abuse in patients with femoral neck and intertrochanteric fractures. Alcohol Alcohol 23:127–132PubMedGoogle Scholar
  24. 24.
    Parfitt AM (1994) Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem 55:273–286CrossRefPubMedGoogle Scholar
  25. 25.
    Parfitt AM, Villanueva AR, Foldes J, Sudhaker Rao D (1995) Relations between histologic indices of bone formation: implications for the pathogenesis of spinal osteoporosis. J Bone Miner Res 10:466–473CrossRefPubMedGoogle Scholar
  26. 26.
    Parfitt AM, Mathews CHE, Villanueva AR, Kleerekoper M, Frame B, Rao DS (1983) Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. J Clin Invest 72:1396–1409CrossRefPubMedGoogle Scholar
  27. 27.
    Dempster DW (1995) Bone remodeling. In: Riggs BL, Melton LJ III (eds) Osteoporosis. Lippincott-Raven, Philadelphia, pp 67–91Google Scholar
  28. 28.
    Parfitt AM (1998) Osteomalacia and related disorders. In: Avioli LV, Krane SM (eds) Metabolic bone disease. Academic Press, San Diego, pp 327–386Google Scholar
  29. 29.
    De Vernejoul MC, Bielakoff HerveM, Gueris J, Hott M, Modrowski D, Kuntz D, Miravet L, Ryckewaert A (1983) Evidence for defective osteoblast function: a role for alcohol and tobacco consumption in middle-aged men. Clin Orthop Relat Res 179:107–115PubMedGoogle Scholar
  30. 30.
    Shankar K, Hidestrand M, Liu X, Chen JR, Haley R, Perrien DS, Skinner RA, Lumpkin CK Jr, Badger TM, Ronis MJJ (2008) Chronic alcohol consumption inhibits postlactational anabolic bone rebuilding in female rats. J Bone Miner Res 23:338–349CrossRefPubMedGoogle Scholar
  31. 31.
    Iwaniec UT, Trevisiol CH, Maddalozzo GF, Rosen CJ, Turner RT (2008) Effects of low dose parathyroid hormone on bone mass, turnover, and ectopic osteoinduction in a rat model for chronic alcohol abuse. Bone (NY) 42:695–701Google Scholar
  32. 32.
    Bikle DD, Genant HK, Cann C, Recker RR, Halloran BP, Strewler GJ (1985) Bone diseases in alcohol abuse. Ann Intern Med 103:42–48PubMedGoogle Scholar
  33. 33.
    Nielsen HK, Lundby L, Rasmussen K, Charles P, Hansen C (1990) Alcohol decreases serum osteocalcin in a dose-dependent way in normal subjects. Calcif Tissue Int 46:173–178CrossRefPubMedGoogle Scholar
  34. 34.
    Schnitzler CM, Solomon L (1984) Bone changes after alcohol abuse. S Afr Med J 66:730–734PubMedGoogle Scholar
  35. 35.
    Zhang J, Dai J, Lin D, Habib P, Smith P, Murtha J, Fu Z, Yao Z, Qi T, Keller ET (2002) Osteoprotegerin abrogates chronic alcohol ingestion-induced bone loss in mice. J Bone Miner Res 17:1256–1263CrossRefPubMedGoogle Scholar
  36. 36.
    Bikle DD (2007) Vitamin D insufficiency/deficiency in gastrointestinal disorders. J Bone Miner Res 22:V50–V54CrossRefPubMedGoogle Scholar
  37. 37.
    Moran CE, Sosa EG, Martinez SM, Geldern P, Messina D, Russo A, Boerr L, Bal JC (1997) Bone mineral density in patients with pancreatic insufficiency and steatorrhea. Am J Gastroenterol 92:867–871PubMedGoogle Scholar
  38. 38.
    Rosen CJ, Morrison A, Zhou H, Storm D, Hunter SJ, Musgrave K, Chen T, Wen-Wei HolickMF (1994) Elderly women in Northern England exhibit seasonal changes in bone mineral density and calcitropic hormones. Bone Miner 25:83–92CrossRefPubMedGoogle Scholar
  39. 39.
    Chapuy MC, Chapuy P, Thomas JL, Hazard MC, Meunier PJ (1996) Biochemical effects of calcium and vitamin D supplementation in elderly, institutionalized, vitamin D deficient patients. Rev Rhum Engl Ed 63:135–140PubMedGoogle Scholar
  40. 40.
    Shane E (1996) Osteoporosis associated with illnesses and medications. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. Academic Press, San Diego, pp 925–946Google Scholar
  41. 41.
    Seftel HC, Malkin C, Schmaman A, Abrahams C, Lynch SR, Charlton RW, Bothwell TH (1966) Osteoporosis, scurvy, and siderosis on Johannesburg Bantu. BMJ 1:642–646CrossRefPubMedGoogle Scholar
  42. 42.
    Schnitzler CM, Schnaid E, MacPhail AP, Mesquita JM, Robson HJ (2005) Ascorbic acid deficiency, iron overload and alcohol abuse underlie the severe osteoporosis in black African patients with hip fractures—a bone histomorphometric study. Calcif Tissue Int 76:79–89CrossRefPubMedGoogle Scholar
  43. 43.
    Segal I (1998) Pancreatitis in Soweto, South Africa: focus on alcohol-related disease. Digestion 59:25–35CrossRefPubMedGoogle Scholar
  44. 44.
    Kalbfleisch JM, Lindeman RD, Ginn HE, Smith WO (1963) Effects of ethanol administration on urinary excretion of magnesium and other electrolytes in alcoholic and normal subjects. J Clin Invest 42:1471–1475CrossRefPubMedGoogle Scholar
  45. 45.
    Rude RK (1998) Magnesium deficiency: a cause of heterogeneous disease in humans. J Bone Miner Res 13:749–758CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer 2010

Authors and Affiliations

  • Christine M. Schnitzler
    • 1
    • 4
  • Julia M. Mesquita
    • 1
    • 2
  • Roy Shires
    • 3
  1. 1.MRC Mineral Metabolism Research UnitUniversity of the WitwatersrandJohannesburgSouth Africa
  2. 2.Division of Orthopaedic SurgeryUniversity of the WitwatersrandJohannesburgSouth Africa
  3. 3.Department of Internal MedicineChris Hani-Baragwanath Hospital, University of the WitwatersrandJohannesburgSouth Africa
  4. 4.Somerset WestSouth Africa

Personalised recommendations