Advertisement

Journal of Bone and Mineral Metabolism

, Volume 28, Issue 2, pp 149–156 | Cite as

Vitamin E exhibits bone anabolic actions in normal male rats

  • Ahmad Nazrun Shuid
  • Zulfadli Mehat
  • Norazlina Mohamed
  • Norliza Muhammad
  • Ima Nirwana SoelaimanEmail author
Original Article

Abstract

Recently, vitamin E has been found to promote the bone structure of nicotine-treated rats well above their baseline values, thus suggesting that vitamin E may have some anabolic action. A bone anabolic agent acts by improving the bone structure leading to stronger bone. To assess the possible anabolic action vitamin E on bone, we supplemented α-tocopherol (ATF) or γ-tocotrienol (GTT) at 60 mg/kg or vehicle [normal control (NC) group] for 4 months to normal male rats and measured their bone structure and biomechanical properties. Histomorphometric analysis revealed that vitamin E-supplemented rats have better trabecular volume, thickness, number, and separation than rats receiving vehicle only. For the first time we reported that GTT improves all the parameters of bone biomechanical strength, while ATF only improved some of the parameters compared to the NC group. Vitamin E supplementation, especially with the gamma isomer, improves bone structure, which contributed to stronger bone. Therefore, vitamin E has the potential to be used as an anabolic agent to treat osteoporosis or as bone supplements for young adults to prevent osteoporosis in later years.

Keywords

Bone anabolic agent Vitamin E Tocotrienol Bone histomorphometry Bone biomechanical test 

References

  1. 1.
    Canalis E, Giustina A, Bilezikian JP (2007) Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 357:905–916CrossRefPubMedGoogle Scholar
  2. 2.
    Buehler J, Chappuis P, Saffar JL, Foos E, Vignery A (2001) Strontium ranelate inhibits bone resorption whilst maintaining bone formation in alveolar bone in monkeys. Bone 29:176–179CrossRefPubMedGoogle Scholar
  3. 3.
    Delannoy P, Bazot D, Marie PJ (2002) Long-term treatment with strontium ranelate increases vertebral bone mass without deleterious effect in mice. Metabolism 51:906–911CrossRefPubMedGoogle Scholar
  4. 4.
    Ammann P, Shen V, Robin B, Mauras Y, Bonjour JP, Rizzoli R (2004) Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res 19:2012–2020CrossRefPubMedGoogle Scholar
  5. 5.
    Riggs BL, Parfitt AM (2005) Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res 20:177–184CrossRefPubMedGoogle Scholar
  6. 6.
    Hermizi H, Faizah O, Ima-Nirwana S, Ahmad Nazrun S, Norazlina M (2009) Beneficial effects of tocotrienol and tocopherol on bone histomorphometric parameters in Sprague–Dawley male rats after nicotine cessation. Calcif Tissue Int 84:65–74CrossRefPubMedGoogle Scholar
  7. 7.
    Azzi A, Strocker A (2000) Vitamin E: non-antioxidant roles. Prog Lipid Res 39:231–255CrossRefPubMedGoogle Scholar
  8. 8.
    Qureshi AA, Sami SA, Salser WA, Khan FA (2002) Dose-dependent suppression of serum cholesterol by tocotrienol-rich fraction (TRF25) of rice bran in hypercholesterolemic humans. Atherosclerosis 161:199–207CrossRefPubMedGoogle Scholar
  9. 9.
    Mahadevappa VG, Sicilia F, Holub BJ (1991) Effect of tocotrienol derivatives on collagen and ADP-induced human platelet aggregation. In: Proceedings 1989 international palm oil conference on nutrition and health aspects of palm oil (PORIM), Kuala Lumpur, Malaysia, pp 36–38Google Scholar
  10. 10.
    Ngah WZ, Jarien Z, San MM, Marzuki A, Top GM, Shamaan NA, Kadir KA (1991) Effect of tocotrienols on hepatocarcinogenesis induced by 2-acetylaminofluorene in rats. Am J Clin Nutr 53:1076–1081Google Scholar
  11. 11.
    Nesaretnam K, Stephen R, Dils R, Darbre P (1998) Tocotrienols inhibit the growth of human breast cancer cells irrespective of estrogen receptor status. Lipids 33:461–469CrossRefPubMedGoogle Scholar
  12. 12.
    Melhus H, Michalsson K, Holmberg L, Wolk A, Ljunghall S (1999) Smoking, antioxidant vitamins, and the risk of hip fracture. J Bone Miner Res 14:129–135CrossRefPubMedGoogle Scholar
  13. 13.
    Xu H, Watkins BA, Seifert MF (1995) Vitamin E stimulates trabecular bone formation and alters epiphyseal cartilage morphometry. Calcif Tissue Int 57:293–300CrossRefPubMedGoogle Scholar
  14. 14.
    Ima-Nirwana S, Kiftiah A, Sariza T, Gapor MT, Khalid BAK (1999) Palm vitamin E improves bone metabolism and survival rate in thyrotoxic rats. Gen Pharmacol 32:621–626CrossRefPubMedGoogle Scholar
  15. 15.
    Ima-Nirwana S, Norazlina M, Khalid BAK (2000) Palm vitamin E prevents osteoporosis in orchidectomized growing male rats. Nat Prod Sci 694:155–160Google Scholar
  16. 16.
    Norazlina M, Ima-Nirwana S, Gapor MT, Khalid BAK (2000) Palm vitamin E is comparable to alpha-tocopherol in maintaining bone mineral density in ovariectomised female rats. Exp Clin Endocrinol Diabetes 108:305–310CrossRefPubMedGoogle Scholar
  17. 17.
    Ima-Nirwana S, Fakhrurazi H (2002) Palm vitamin E protects bone against dexamethasone-induced osteoporosis in male rats. Med J Malaysia 57:136–144Google Scholar
  18. 18.
    Ahmad NS, Khalid BAK, Luke DA, Ima-Nirwana S (2005) Tocotrienol offers better protection than tocopherol from free radical-induced damage of rat bone. Clin Exp Pharmacol Physiol 32:761–770CrossRefPubMedGoogle Scholar
  19. 19.
    Czerny B, Pawlik A, Juzyszyn Z, Myśliwiec Z (2004) The effect of tamoxifen and fluoride on bone mineral density, biomechanical properties and blood lipids in ovariectomized rats. Basic Clin Pharmacol Toxicol 92:162–165Google Scholar
  20. 20.
    Turner CH, Hinckley WR, Wilson ME, Zhang W, Dunipace AJ (2001) Combined effects of diets with reduced calcium and phosphate and increased fluoride intake on vertebral bone strength and histology in rats. Calcif Tissue Int 69:51–57CrossRefPubMedGoogle Scholar
  21. 21.
    Bohatyrewicz A (1999) Effects of fluoride on mechanical properties of femoral bone in growing rats. Fluoride 32:47–54Google Scholar
  22. 22.
    Chacha D, Turner CH, Dunipace AJ, Grynpas MD (1999) The effect of fluoride treatment on bone mineral in rabbits. Calcif Tissue Int 64:345–351CrossRefGoogle Scholar
  23. 23.
    Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols and units. Report of the ASMBR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610CrossRefPubMedGoogle Scholar
  24. 24.
    Difford J (1974) A simplified method for the preparation of methyl methacrylate embedding medium. Med Lab Technol 31:79–81PubMedGoogle Scholar
  25. 25.
    Von Kossa J (1974) Nachweis von Kalk. Beitrage zur pathologischen Anatomie und zur allgemeinen. Pathologie 29:163Google Scholar
  26. 26.
    Baldock PA, Morris HA, Need AG, Moore RJ, Durbridge TC (1998) Variation in the short-term changes in bone cell activity in three regions of the distal femur immediately following ovariectomy. J Bone Miner Res 13:1451–1457CrossRefPubMedGoogle Scholar
  27. 27.
    Haffa A, Krueger D, Bruner J, Engelke J, Gundberg C, Akhter M, Binkley N (2000) Diet- or warfarin-induced vitamin K insufficiency elevates circulating undercarboxylated osteocalcin without altering skeletal status in growing female rats. J Bone Miner Res 15:872–878CrossRefPubMedGoogle Scholar
  28. 28.
    Fort FL (1991) Drug safety evaluation. In: Swarbrick J, Boylan JC (eds) Encyclopedia of pharmaceutical technology, vol 4. Marcel Dekker, New York, pp 416–421Google Scholar
  29. 29.
    Rico H, Revilla M, Villa LF, Alvarez de Buergo M, Ruiz-Contreras D (1994) Determinants of total and regional bone mineral content and density in postpubertal normal women. Metabolism 43:263–266CrossRefPubMedGoogle Scholar
  30. 30.
    Rico H, Amo C, Revilla M, Arribas I, González-Riola J et al (1994) Etidronate versus clodronate in the prevention of postovariectomy bone loss. An experimental study in rats. Clin Exp Rheumatol 12:301–304PubMedGoogle Scholar
  31. 31.
    Umegaki K, Itoh T, Ichikawa T (1994) Effect of vitamin E on chromosomal damage in bone marrow cells of mice having received low dose of X-ray irradiation. Int J Vitam Nutr Res 64:249–252PubMedGoogle Scholar
  32. 32.
    Meydani SN, Meydani M, Rall LC, Morrow F, Blumberg JB (1994) Assessment of the safety of high-dose, short-term supplementation with vitamin E in healthy older adults. Am J Clin Nutr 60:704–709PubMedGoogle Scholar
  33. 33.
    Nakamura H, Furukawa F, Nishikawa A, Miyauchi M, Son H-Y, Imazawa T, Hirose M (2001) Oral toxicity of a tocotrienol preparation in rats. Food Chem Toxicol 39:799–805CrossRefPubMedGoogle Scholar
  34. 34.
    Oo SL, Chang P, Chan KE (1992) Toxicological and pharmacological studies on palm vitee. Nutr Res 2:217–222Google Scholar
  35. 35.
    Vignery A, Baron R (1980) Dynamic histomorphometry of alveolar bone remodeling in the adult rat. Anat Rec 196:191–200CrossRefPubMedGoogle Scholar
  36. 36.
    Barengolts EL, Curry DJ, Bapna MS, Kukreja SC (1993) Effects of two non-endurance exercise protocols on established bone loss in ovariectomized adult rats. Calcif Tissue Int 52:239–243CrossRefPubMedGoogle Scholar
  37. 37.
    Currey JD (1988) The effect of porosity and ash content on the Young’s modulus of elasticity of compact bone. J Biomech 21:131–139CrossRefPubMedGoogle Scholar
  38. 38.
    Schaffler MB, Burr DB (1988) Stiffness of compact bone: effects of porosity and density. J Biomech 21:13–16CrossRefPubMedGoogle Scholar
  39. 39.
    Arjmandi BH, Juma S, Beharka A, Bapna S, Akhter M, Meydani SN (2002) Vitamin E improves bone quality in the aged but not in young adult male mice. J Nutr Biochem 13:543–549CrossRefPubMedGoogle Scholar
  40. 40.
    Turan B, Balcik C, Akkas N (1997) Effect of dietary selenium and vitamin E on the biomechanical properties of rabbit bones. Clin Rheumatol 16:441–449CrossRefPubMedGoogle Scholar
  41. 41.
    Erikson EH (1950) Childhood and society. Norton, New YorkGoogle Scholar
  42. 42.
    Wang L, Banu J, McMahan CA, Kalu DN (2001) Male rodent model of age-related bone loss in men. Bone 29:141–148CrossRefPubMedGoogle Scholar
  43. 43.
    Sandra M, Norazlina M, Nazrun AS, Ima Nirwana S (2008) Palm tocotrienol exerted better antioxidant activities in bone than alpha-tocopherol. Basic Clin Pharmacol Toxicol 103:55–60CrossRefGoogle Scholar
  44. 44.
    Ebina Y, Okada S, Hamazaki S, Toda Y, Midorikawa O (1991) Impairment of bone formation with aluminium and ferric nitrilotriacetate complexes. Calcif Tissue Int 48:28–36CrossRefPubMedGoogle Scholar
  45. 45.
    Abhaya A, Khatri K, Pradhan S, Prakash R (2003) Effect of alpha tocopherol on the growth plate of albino rats. J Anat Soc India 52:58–63Google Scholar
  46. 46.
    Meydani SN, Barklund MP, Liu S, Meydani M, Miller RA, Cannon JG, Morrow FD, Rocklin R, Blumberg JB (1990) Vitamin E supplementation enhances cell-mediated immunity in healthy elderly subjects. Am J Clin Nutr 52:557–563PubMedGoogle Scholar
  47. 47.
    Khanduja KL, Avti PK, Kumar S, Pathania V, Pathak CM (2005) Inhibitory effect of vitamin E on proinflammatory cytokines-and endotoxin-induced nitric oxide release in alveolar macrophages. Life Sci 76:2669–2680CrossRefPubMedGoogle Scholar
  48. 48.
    Pathania V, Syal N, Pathak CM, Khanduja KL (1999) Vitamin E suppresses the induction of reactive oxygen species release by lipopolysaccharide, interleukin-1β and tumor necrosis factor-α in rat alveolar macrophages. J Nutr Sci Vitaminol 45:675–686PubMedGoogle Scholar
  49. 49.
    Devaraj S, Jialal I (2005) α-Tocopherol decreases tumor necrosis factor-α mRNA and protein from activated human monocytes by inhibition of 5-lipoxygenase. Free Radic Biol Med 38:1212–1220CrossRefPubMedGoogle Scholar
  50. 50.
    Kamat JP, Devasagayam TPA (1995) Tocotrienols from palm oil as a potent inhibitor of lipid peroxidation and protein oxidation in rat brain mitochondria. Neurosci Lett 195:179–182CrossRefPubMedGoogle Scholar
  51. 51.
    Serbinova E, Kagan V, Han D, Packer L (1991) Free radical recycling and intramembrane mobility in the antioxidant properties of tocopherol and tocotrienol. Free Radic Biol Med 10:263–275CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer 2009

Authors and Affiliations

  • Ahmad Nazrun Shuid
    • 1
  • Zulfadli Mehat
    • 1
  • Norazlina Mohamed
    • 1
  • Norliza Muhammad
    • 1
  • Ima Nirwana Soelaiman
    • 1
    Email author
  1. 1.Department of Pharmacology, Faculty of Medicine UKMUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia

Personalised recommendations