Journal of Bone and Mineral Metabolism

, Volume 27, Issue 6, pp 673–681 | Cite as

Dietary quercetin inhibits bone loss without effect on the uterus in ovariectomized mice

  • Mitsuyoshi Tsuji
  • Hironori Yamamoto
  • Tadatoshi Sato
  • Yoko Mizuha
  • Yoshichika Kawai
  • Yutaka Taketani
  • Shigeaki Kato
  • Junji Terao
  • Takahiro Inakuma
  • Eiji Takeda
Original Article

Abstract

Quercetin is a major dietary flavonoid found in onions and other vegetables, and potentially has beneficial effects on disease prevention. In the present study, we demonstrate for the first time the effects of dietary quercetin on bone loss and uterine weight loss by ovariectomy in vivo. Female mice were ovariectomized (OVX) and were randomly allocated to 3 groups: a control diet or a diet with 0.25% (LQ) or 2.5% quercetin (HQ). After 4 weeks, dietary quercetin had no effects on uterine weight in OVX mice, but bone mineral density of the lumbar spine L4 and femur measured by peripheral quantitative computed tomography (pQCT) was higher in both the sham and the HQ groups than in the OVX group. Histomorphometric analysis showed that the HQ group restored bone volume (BV/TV) completely in distal femoral cancellous bone, but did not reduce the osteoclast surface area and osteoclast number when compared with the OVX group. In in-vitro experiments using mouse monocyte/macrophage cell line RAW264.7 cells, however, quercetin and its conjugate, quercetin-3-O-beta-d-glucuronide dose-dependently inhibited the receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclast differentiation, and the RANKL-stimulated expression of osteoclast related genes was also inhibited by quercetin. The luciferase reporter assay showed that quercetin did not appear to have estrogenic activity through estrogen receptors. These results suggest that dietary quercetin inhibits bone loss without effect on the uterus in OVX mice and does not act as a potent inhibitor of osteoclastogenesis or as a selective estrogen receptor modulator in vivo.

Keywords

Quercetin Bone Ovariectomized mice Osteoclast Estrogen receptors 

References

  1. 1.
    Horowitz MC, Xi Y, Wilson K, Kacena MA (2001) Control of osteoclastogenesis and bone resorption by members of the TNF family of receptors and ligands. Cytokine Growth Factor Rev 12:9–18CrossRefPubMedGoogle Scholar
  2. 2.
    Gallagher JC (1996) Estrogen: prevention and treatment of osteoporosis. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. San Diego, CA, pp 1191–1208Google Scholar
  3. 3.
    Melton LJ (1995) Epidemiology of fractures. In: Riggs BL, Melton LJ (eds) Osteoporosis: etiology, diagnosis and management. Lippincott-Raven, Philadelphia, pp 225–248Google Scholar
  4. 4.
    Lindsay R, Hart DM, Aitken JM, MacDonald EB, Anderson KB, Clarke AC (1976) Long-term prevention of postmenopausal osteoporosis by estrogen. Lancet 1:1038–1041CrossRefPubMedGoogle Scholar
  5. 5.
    Quigley ME, Martin PL, Burnier AM, Brooks P (1987) Estrogen therapy arrests bone loss in elderly women. Am J Obstet Gynecol 156:1516–1523PubMedGoogle Scholar
  6. 6.
    Weiss NS, Ure CL, Ballard JH, Williams AR, Daling JR (1980) Decreased risk of fractures of the hip and lower forearm with postmenopausal use of estrogen. N Engl J Med 303:1195–1198PubMedGoogle Scholar
  7. 7.
    Hutchinson TA, Polansky SM, Feinstein AR (1979) Postmenopausal oestrogens protect against fractures of hip and distal radius. Lancet 2:705–709CrossRefPubMedGoogle Scholar
  8. 8.
    Ettinger B, Genant HK, Cann CE (1985) Long-term estrogen replacement therapy prevents bone loss and fractures. Ann Intern Med 102:319–324PubMedGoogle Scholar
  9. 9.
    Henderson BE (1989) The cancer question: an overview of recent epidemiologic and retrospective data. Am J Obstet Gynecol 161:1859–1864PubMedGoogle Scholar
  10. 10.
    Key TJA, Pike MC (1988) The role of oestrogens and progestagens in the epidemiology and prevention of breast cancer. Eur J Cancer 24:29–43CrossRefGoogle Scholar
  11. 11.
    Steinberg KK, Thacker SB, Smith SJ, Stroup DE, Zack MM, Flanders WD, Berkelman RL (1991) A meta-analysis of the effect of estrogen replacement therapy on the risk of breast cancer. JAMA 265:1985–1990CrossRefPubMedGoogle Scholar
  12. 12.
    New SA, Robins SP, Campbell MK, Martin JC, Garton MJ, Bolton-Smith C, Grubb DA, Lee SJ, Reid DM (2000) Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health? Am J Clin Nutr 71:142–151PubMedGoogle Scholar
  13. 13.
    Muhlbauer RC, Lozano A, Reinli A (2002) Onion and a mixture of vegetables, salads, and herbs affect bone resorption in the rat by a mechanism independent of their base excess. J Bone Miner Res 17:1230–1235CrossRefPubMedGoogle Scholar
  14. 14.
    Ishimi Y, Arai N, Wang X, Wu J, Umegaki K, Miyaura C, Takeda K, Ikegami S (2000) Difference in effective dosage of genistein on bone and uterus in ovariectomized mice. Biochem Biophys Res Commun 274:697–701CrossRefPubMedGoogle Scholar
  15. 15.
    Nagata C, Takatsuka N, Inaba S, Kawakami N, Shimizu H (1998) Effect of soymilk consumption on serum estrogen concentrations in premenopausal Japanese women. J Natl Cancer Inst 90:1830–1835CrossRefPubMedGoogle Scholar
  16. 16.
    Marini H, Minutoli L, Polito F, Bitto A, Altavilla D, Atteritano M, Gaudio A, Mazzaferro S, Frisina A, Frisina N, Lubrano C, Bonaiuto M, D’Anna R, Cannata ML, Corrado F, Adamo EB, Wilson S, Squadrito F (2007) Effects of the phytoestrogen genistein on bone metabolism in osteopenic postmenopausal women: a randomized trial. Ann Intern Med 146:839–847PubMedGoogle Scholar
  17. 17.
    Paganga G, Miller N, Rice-Evans CA (1999) The polyphenolic content of fruit and vegetables and their antioxidant activities. What does a serving constitute? Free Radic Res 30:153–162CrossRefPubMedGoogle Scholar
  18. 18.
    Murota K, Mitsukuni Y, Ichikawa M, Tsushida T, Miyamoto S, Terao J (2004) Quercetin-4′-glucoside is more potent than quercetin-3-glucoside in protection of rat intestinal mucosa homogenates against iron ion-induced lipid peroxidation. J Agric Food Chem 52:1907–1912CrossRefPubMedGoogle Scholar
  19. 19.
    Kuo PC, Liu HF, Chao JI (2004) Survivin and p53 modulate quercetin-induced cell growth inhibition and apoptosis in human lung carcinoma cells. J Biol Chem 279:55875–55885CrossRefPubMedGoogle Scholar
  20. 20.
    Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliovaara M, Reunanen A, Hakulinen T, Aromaa A (2002) Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76:560–568PubMedGoogle Scholar
  21. 21.
    Ioku K, Tsushida T, Takei Y, Nakatani N, Terao J (1995) Antioxidative activity of quercetin and quercetin monoglucosides in solution and phospholipid bilayers. Biochim Biophys Acta 1234:99–104CrossRefPubMedGoogle Scholar
  22. 22.
    Mühlbauer RC, Li Feng (1999) Effect of vegetables on bone metabolism. Nature 401:343–344CrossRefPubMedGoogle Scholar
  23. 23.
    Horcajada-Molteni MN, Crespy V, Coxam V, Davicco MJ, Remesy C, Barlet JP (2000) Rutin inhibits ovariectomy-induced osteopenia in rats. J Bone Miner Res 15:2251–2258CrossRefPubMedGoogle Scholar
  24. 24.
    Rassi CM, Lieberherr M, Chaumaz G, Pointillart A, Cournot G (2005) Modulation of osteoclastogenesis in porcine bone marrow cultures by quercetin and rutin. Cell Tissue Res 319:383–393CrossRefPubMedGoogle Scholar
  25. 25.
    Woo JT, Nakagawa H, Notoya M, Yonezawa T, Udagawa N, Lee IS, Ohnishi M, Hagiwara H, Nagai K (2004) Quercetin suppresses bone resorption by inhibiting the differentiation and activation of osteoclasts. Biol Pharm Bull 27:504–509CrossRefPubMedGoogle Scholar
  26. 26.
    Moon JH, Tsushida T, Nakahara K, Terao J (2001) Identification of quercetin 3-O-beta-d-glucuronide as an antioxidative metabolite in rat plasma after oral administration of quercetin. Free Radic Biol Med 30:1274–1285CrossRefPubMedGoogle Scholar
  27. 27.
    Terao J, Yamaguchi S, Shirai M, Miyoshi M, Moon JH, Oshima S, Inakuma T, Tsushida T, Kato Y (2001) Protection by quercetin and quercetin 3-O-beta-d-glucuronide of peroxynitrite-induced antioxidant consumption in human plasma low-density lipoprotein. Free Radic Res 35:925–931CrossRefPubMedGoogle Scholar
  28. 28.
    Wattel A, Kamel S, Mentaverri R, Lorget F, Prouillet C, Petit JP, Fardelonne P, Brazier M (2003) Potent inhibitory effect of naturally occurring flavonoids quercetin and kaempferol on in vitro osteoclastic bone resorption. Biochem Pharmacol 65:35–42CrossRefPubMedGoogle Scholar
  29. 29.
    Ferretti JL, Capozza RF, Zanchetta JR (1996) Mechanical validation of a tomographic (pQCT) index for noninvasive estimation of rat femur bending strength. Bone 18:97–102CrossRefPubMedGoogle Scholar
  30. 30.
    Schiessl H, Ferretti JL, Tysarczyk-Niemeyer G, Willnecker J (1996) Non-invasive bone strength index as analyzed by peripheral quantitative computed tomography (pQCT). In: Eckhard S (ed) Paediatric osteology: new developments in diagnostics and therapy. Elsevier, Amsterdam, pp 141–146 Google Scholar
  31. 31.
    Ferritti JL (2000) Peripheral quantitative computed tomography for evaluating structural and mechanical properties of small bone. In: Yuehuei HA, Robert AD (eds) Mechanical testing of bone and the bone-implant interface. CRC Press, Boca Raton, pp 385–406Google Scholar
  32. 32.
    Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker R (1987) Bone histomorphometry: standardization of nomenclature, symbols and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610PubMedCrossRefGoogle Scholar
  33. 33.
    Shevde NK, Plum LA, Clagett-Dame M, Yamamoto H, Pike JW, DeLuca HF (2002) A potent analog of 1alpha, 25-dihydroxyvitamin D3 selectively induces bone formation. Proc Natl Acad Sci USA 99:13487–13491CrossRefPubMedGoogle Scholar
  34. 34.
    Sato T, Yamamoto H, Sawada N, Nashiki K, Tsuji M, Nikawa T, Arai H, Morita K, Taketani Y, Takeda E (2006) Immobilization decreases duodenal calcium absorption through a 1, 25-dihydroxyvitamin D-dependent pathway. J Bone Miner Metab 24:291–299CrossRefPubMedGoogle Scholar
  35. 35.
    Mizuha Y, Yamamoto H, Sato T, Tsuji M, Masuda M, Uchida M, Sakai K, Taketani Y, Yasutomo K, Sasaki H, Takeda E (2007) Water extract of Cordyceps sinensis (WECS) inhibits the RANKL-induced osteoclast differentiation. Biofactors 30:105–116CrossRefPubMedGoogle Scholar
  36. 36.
    Arai H, Miyamoto K, Taketani Y, Yamamoto H, Iemori Y, Morita K, Tonai T, Nishisho T, Mori S, Takeda E (1997) A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bone mineral density in Japanese women. J Bone Miner Res 12:915–921CrossRefPubMedGoogle Scholar
  37. 37.
    Wattel A, Kamel S, Prouillet C, Petit JP, Lorget F, Offord E, Brazier M (2004) Flavonoid quercetin decreases osteoclastic differentiation induced by RANKL via a mechanism involving NF kappa B and AP-1. J Cell Biochem 92:285–295CrossRefPubMedGoogle Scholar
  38. 38.
    Yoshizumi M, Tsuchiya K, Suzaki Y, Kirima K, Kyaw M, Moon J-H, Terao J, Tamaki T (2002) Quercetin glucuronide prevents VSMC hypertrophy by angiotensin II via the inhibition of JNK and AP-1signaling pathway. Biochem Biophys Res Commun 293:1458–1465CrossRefPubMedGoogle Scholar
  39. 39.
    Asagiri M, Takayanagi H (2007) The molecular understanding of osteoclast differentiation. Bone 40:251–264CrossRefPubMedGoogle Scholar
  40. 40.
    Kawai Y, Nishikawa T, Shiba Y, Saito S, Murota K, Shibata N, Kobayashi M, Kanayama M, Uchida K, Terao J (2008) Macrophage as a target of quercetin glucuronides in human atherosclerotic arteries: implication in the anti-atherosclerotic mechanism of dietary flavonoids. J Biol Chem 283:9424–9434CrossRefPubMedGoogle Scholar
  41. 41.
    Prouillet C, Mazière JC, Mazière C, Wattel A, Brazier M, Kamel S (2004) Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway. Biochem Pharmacol 67:1307–1313CrossRefPubMedGoogle Scholar
  42. 42.
    Notoya M, Tsukamoto Y, Nishimura H, Woo JT, Nagai K, Lee IS, Hagiwara H (2004) Quercetin, a flavonoid, inhibits the proliferation, differentiation, and mineralization of osteoblasts in vitro. Eur J Pharmacol 485:89–96CrossRefPubMedGoogle Scholar
  43. 43.
    Son YO, Kook SH, Choi KC, Jang YS, Jeon YM, Kim JG, Lee KY, Kim J, Chung MS, Chung GH, Lee JC (2006) Quercetin, a bioflavonoid, accelerates TNF-alpha-induced growth inhibition and apoptosis in MC3T3-E1 osteoblastic cells. Eur J Pharmacol 529:24–32CrossRefPubMedGoogle Scholar
  44. 44.
    Kim DS, Takai H, Arai M, Araki S, Mezawa M, Kawai Y, Murota K, Terao J, Ogata Y (2007) Effects of quercetin and quercetin 3-glucuronide on the expression of bone sialoprotein gene. J Cell Biochem 101:790–800CrossRefPubMedGoogle Scholar
  45. 45.
    Wuttke W, Jarry H, Westphalen S, Christoffel V, Seidlová-Wuttke D (2002) Phytoestrogens for hormone replacement therapy? J Steroid Biochem Mol Biol 83:133–147CrossRefPubMedGoogle Scholar
  46. 46.
    Maggiolini M, Bonofiglio D, Marsico S, Panno ML, Cenni B, Picard D, Andò S (2001) Estrogen receptor alpha mediates the proliferative but not the cytotoxic dose-dependent effects of two major phytoestrogens on human breast cancer cells. Mol Pharmacol 60:595–602PubMedGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer 2009

Authors and Affiliations

  • Mitsuyoshi Tsuji
    • 1
  • Hironori Yamamoto
    • 1
  • Tadatoshi Sato
    • 1
  • Yoko Mizuha
    • 1
  • Yoshichika Kawai
    • 2
  • Yutaka Taketani
    • 1
  • Shigeaki Kato
    • 3
  • Junji Terao
    • 2
  • Takahiro Inakuma
    • 4
  • Eiji Takeda
    • 1
  1. 1.Department of Clinical Nutrition, Institute of Health BiosciencesThe University of TokushimaTokushimaJapan
  2. 2.Department of Food Science, Institute of Health BiosciencesThe University of Tokushima Graduate SchoolTokushimaJapan
  3. 3.Institute of Molecular and Cellular BiosciencesThe University of Tokyo Graduate SchoolTokyoJapan
  4. 4.Biogenics ResearchKagome Co., Ltd.TochigiJapan

Personalised recommendations