Journal of Bone and Mineral Metabolism

, Volume 27, Issue 5, pp 613–619 | Cite as

Relationship between bone mineral density, leptin and insulin concentration in Brazilian obese adolescents

  • Wagner Luiz do Prado
  • Aline de Piano
  • Marise Lazaretti-Castro
  • Marco Túlio de Mello
  • Sérgio Garcia Stella
  • Sergio Tufik
  • Cláudia Maria Oller do Nascimento
  • Lila Missae Oyama
  • Mara Cristina Lofrano
  • Lian Tock
  • Danielle Arisa Caranti
  • Ana Raimunda Dâmaso
Original Article


Despite the epidemic of adolescent obesity, the effect of obesity and hormones on bone mineral accrual during growth is poorly understood. Studies using dual-energy X-ray to examine the effect of obesity on bone mass in children and adolescents have yielded conflicting results. The aim of this study was to explore the combined and independent contributions of body mass index, body composition, leptin, insulin, glucose levels and Homeostasis Model Assessment Insulin Resistance (HOMA-IR) to bone mineral density (BMD) and bone mineral content in a group of Brazilian obese adolescents. This study included 109 post-pubescent obese adolescents. A whole-body dual-energy X-ray absorptiometry scan was performed,using a HOLOGIC QDR4200, to determine whole-body BMD and body composition. Blood samples were collected in the outpatient clinic after an overnight fast, and evaluated for fasting blood glucose and immunoreactive insulin. Leptin levels were assessed with a radioimmunoassay kit. Insulin resistance was assessed by HOMA-IR and the quantitative insulin sensitivity check index. Our results showed that insulin levels and HOMA-IR correlated negatively with BMD and a linear regression analysis showed that serum leptin is inversely associated to BMD adjusted for body mass. In conclusion, our data support the hypothesis that leptin, insulin and HOMA-IR are inversely associated with BMD and play a significant direct role in bone metabolism.


Obesity Bone mass Hormones DEXA Body composition 



AFIP, FAPESP, CNPQ and CAPES supported the CEPE multidisciplinary obesity intervention program. CENESP, FADA, FAPESP (2006/00684-3; 2008/53069-0), (CEPID/Sleep #9814303-3 st), UNIFESP. Special thanks to patients and their parents.


  1. 1.
    Morberg CM, Tetehs I, Black E, Toubro S, Soerensen TIA, Pedersen O, Astrup A (2003) Leptin and bone mineral density: a cross-sectional study in obese and nonobese men. J Clin Endocrinol Metab 88:5795–5800PubMedCrossRefGoogle Scholar
  2. 2.
    Siris ES, Miller PD, Barrett-Connor E, Faulkner KG, Wehren LE, Abbott TA, Berger ML, Santora AC, Sherwood LM (2001) Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. JAMA 286:2815–2822PubMedCrossRefGoogle Scholar
  3. 3.
    Kirchengast S, Knogler W, Hauser G (2002) Protective effect of moderate overweight on bony density of the hip joint in elderly and old Austrians. Anthropol Anz 60:187–197PubMedGoogle Scholar
  4. 4.
    Rico H, Arribas I, Casanova FJ, Duce AM, Hernadez ER, Cortez-Prieto J (2002) Bone mass, bone metabolism gonadal status and body mass index. Osteoporos Int 13:187–379CrossRefGoogle Scholar
  5. 5.
    Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM (1995) Bone loss and bone turnover in diabetes. Diabetes 44:775–782PubMedCrossRefGoogle Scholar
  6. 6.
    Afghani A, Cruz ML, Goran MI (2005) Impaired glucose tolerance and bone mineral content in overweight latino children with a family history of type 2 diabetes. Diabetes Care 28:372–378PubMedCrossRefGoogle Scholar
  7. 7.
    Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207PubMedCrossRefGoogle Scholar
  8. 8.
    Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang Y, Proença R, Maffei M, Baroni M, Lori L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432PubMedCrossRefGoogle Scholar
  10. 10.
    Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL (1999) Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140:1630–1938PubMedCrossRefGoogle Scholar
  11. 11.
    Sun AJ, Jing T, Heymsfield SB, Philips GB (2003) Relationship of leptin and sex hormones to bone mineral density in men. Acta Diabetol 40:S101–S105PubMedCrossRefGoogle Scholar
  12. 12.
    Zoico E, Zamboni M, Adami S, Vettor R, Mazzali G, Tosoni P, Bissoli L, Bosello O (2003) Relationship between leptin levels and bone mineral density in the elderly. Clin Endocrinol 59:97–103CrossRefGoogle Scholar
  13. 13.
    Hamrick MW, Pennington C, Newton D, Xie D, Isales C (2004) Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone 34:376–383PubMedCrossRefGoogle Scholar
  14. 14.
    Leonard MB, Shults J, Wilson BA, Tershakovec AM, Zemel BS (2004) Obesity during childhood and adolescence augments bone mass and bone dimensions. Am J Clin Nutr 80:514–523PubMedGoogle Scholar
  15. 15.
    Rocher E, Chappard C, Jaffre C, Benhamou CL, Courteix D (2008) Bone mineral density in prepubertal obese and control children: relation to body weight, lean mass, and fat mass. J Bone Miner Metab 26:73–78PubMedCrossRefGoogle Scholar
  16. 16.
    da Silva HG, Mendonça LM, Conceição FL, Zahar SE, Farias ML (2007) Influence of obesity on bone density in postmenopausal women. Arq Bras Endocrinol Metabol 51:943–949PubMedGoogle Scholar
  17. 17.
    Stettler N, Berkowtiz RI, Cronquist JL, Shults J, Wadden TA, Zemel BS et al (2008) Observational study of bone accretion during successful weight loss in obese adolescents. Obesity 16:96–101PubMedCrossRefGoogle Scholar
  18. 18.
    Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ (2001) Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. J Pediatr 139:509–515PubMedCrossRefGoogle Scholar
  19. 19.
    Goulding A, Taylor RW, Jones IE, McAuley KA, Manning PJ, Williams SM (2000) Overweight and obese children have low bone mass and area for their weight. Int J Obes Relat Metab Disord 24:627–632PubMedCrossRefGoogle Scholar
  20. 20.
    Tanner JM, Whithouse RH (1976) Clinical longitudinal standards for height, weight velocity and stages of puberty. Arch Dis Child 51:170–179PubMedCrossRefGoogle Scholar
  21. 21.
    Gutin B, Ransey L, Barbeu P et al (1999) Plasma leptin concentrations in obese children: changes during 4-mo periods with and without physical training. Am J Clin Nutr 69:388–394PubMedGoogle Scholar
  22. 22.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostais model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRefGoogle Scholar
  23. 23.
    Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, Quon MJ (2000) Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 85:2402–2410PubMedCrossRefGoogle Scholar
  24. 24.
    Schwimmer JB, Deutsch R, Rauch JB, Bahling C, Newbury R, Lavine JG (2003) Obesity, insulin resistance, and other clinicopathological correlates of pediatrics nonalcoholic fatty liver disease. J Pediatr 143:500–505PubMedCrossRefGoogle Scholar
  25. 25.
    Black E, Petersen L, Kreutzer M, Toubro S, Sorensen TI, Astrup A (2002) Fat mass measured by DXA varies with scan mode. Obes Res 10:69–77PubMedCrossRefGoogle Scholar
  26. 26.
    Lorentzon M, Lorentzon R, Bäckström T, Nordstöm P (1999) Estrogen receptor gene polymorphism, but not estradiol levels, is related to bone density in health adolescent boys: a cross-sectional and longitudinal study. J Clin Endocrinol Metab 84:4597–4601PubMedCrossRefGoogle Scholar
  27. 27.
    Janz K (2002) Physical activity and bone development during childhood and adolescence. Implications for the prevention of osteoporosis. Minerva Pediatr 54:93–104PubMedGoogle Scholar
  28. 28.
    Jüremäe T, Sööt T, Jüremäe J (2005) Relationship of anthropometrical and body composition with bone mineral content or density in young women with different levels of physical activity. J Physiol Anthropol Appl Human Sci 24:579–587CrossRefGoogle Scholar
  29. 29.
    Holbrook TL, Barret-Connor E (1993) The association of lifetime weight and height control patterns with bone mineral density in an adult community. Bone Miner 20:141–142PubMedCrossRefGoogle Scholar
  30. 30.
    Ackerman A, Thornton JC, Wang J, Pierson RN Jr, Horlick M (2006) Sex difference in the effect of puberty on the relationship between fat mass and bone mass in 926 healthy subjects, 6 to 18 years old. Obesity 14:819–825PubMedCrossRefGoogle Scholar
  31. 31.
    Thomas DM, Ng KW, Best JD (1997) Insulin and bone: a clinical and scientific review. Endocrinol Metab 4:5–17Google Scholar
  32. 32.
    Abrahamsen B, Rohold A, Henriksen JE, Beck-Nielsen H (2000) Correlations between insulin sensitivity and bone mineral density in non-diabetic men. Diabet Med 17:124–129PubMedCrossRefGoogle Scholar
  33. 33.
    Abou Samra R, Baba NH, Torbay N, Dib L, Fuleihan GEH (2005) High plasma leptin levels is not associated with higher bone mineral density in insulin-resistance premenopausal obese women. J Clin Nedocrinol Metab 90:2588–2594CrossRefGoogle Scholar
  34. 34.
    Caranti DA, Lazzer S, Dâmaso AR, Agosti F, Zennaro R, de Mello MT, Tufik S, Sartorio A (2008) Prevalence and risk factors of metabolic syndrome in Brazilian and Italian obese adolescents: a comparison study. Int J Clin Pract 62:1526–1532PubMedCrossRefGoogle Scholar
  35. 35.
    Dâmaso AR, do Prado WL, de Piano A, Tock L, Caranti DA, Lofrano MC, Carnier J, Cristofalo DJ, Lederman H, Tufik S, de Mello MT (2008) Relationship between nonalcoholic fatty liver disease prevalence and visceral fat in obese adolescents. Dig Liver Dis 40:132–139PubMedCrossRefGoogle Scholar
  36. 36.
    Nagasaki K, Kikuchi T, Hiura M, Uchiyama M (2004) Obese Japanese children have low bone mineral density after puberty. J Bone Miner Metab 22:376–381PubMedCrossRefGoogle Scholar
  37. 37.
    Maccario M, Ramunni J, Oleandri SE, Procopio M, Grottoli S, Rossetto R, Savio P, Aimaretti G, Camanni F, Ghigo E (1999) Relationships between IGF-I and age, gender, body mass, fat distribution, metabolic and hormonal variables in obese patients. Int J Obes Relat Metab Disord 23:612–618PubMedCrossRefGoogle Scholar
  38. 38.
    Radetti G, Bozzola M, Pasquino B, Paganini C, Aglialoro A, Livieri C, Barreca A (1998) Growth hormone bioactivity, insulin-like growth factors (IGFs), and IGF binding proteins in obese children. Metabolism 47:1490–1493PubMedCrossRefGoogle Scholar
  39. 39.
    Argente J, Caballo N, Barrios V, Pozo J, Muñoz MT, Chowen JA, Hernández M (1997) Multiple endocrine abnormalities of the growth hormone and insulin-like growth factor axis in prepubertal children with exogenous obesity: effect of short- and long-term weight reduction. J Clin Endocrinol Metab 82:2076–2083PubMedCrossRefGoogle Scholar
  40. 40.
    Nam SY, Lee EJ, Kim KR, Cha BS, Song YD, Lim SK, Lee HC, Huh KB (1997) Effect of obesity on total and free insulin-like growth factor (IGF)-1, and their relationship to IGF-binding protein (BP)-1, IGFBP-2, IGFBP-3, insulin, and growth hormone. Int J Obes Relat Metab Disord 21:355–359PubMedCrossRefGoogle Scholar
  41. 41.
    Kinjo M, Setoguchi S, Solomon DH (2007) Bone mineral density in adults with the metabolic syndrome: analysis in a population-based U.S. sample. J Clin Endocrinol Metab 92:4161–4164PubMedCrossRefGoogle Scholar
  42. 42.
    Zhong N, Wu XP, Xu ZR, Wang AH, Luo XH, Cao XZ, Xie H, Shan PF, Liao EY (2005) Relationship of serum leptin with age, body mass index, and bone mineral density in healthy mainland Chinese women. Clin Chim Acta 351:161–168PubMedCrossRefGoogle Scholar
  43. 43.
    Iwamoto I, Douchi T, Kosha S, Murakami M, Pujino T, Nagata Y (2000) Relationship between serum leptin levels and regional bone mineral density, bone metabolic markers in healthy women. Acta Obstet Gynecol Scand 79:1060–1064PubMedCrossRefGoogle Scholar
  44. 44.
    Odabasi E, Azata M, Turan M, Bingol N, Yonem A, Cakir B, Kutlu M, Oxdemir IC (2000) Plasma leptin concentrations in postmenopausal women with osteoporosis. Eur J Endocrinol 142:170–174PubMedCrossRefGoogle Scholar
  45. 45.
    Blum M, Harris SS, Must A, Naumova EN, Phillips SM, Rand WM, Dawson-Hughes B (2003) Leptin, body composition and bone mineral density in premenopausal women. Calcif Tissue Int 73:27–32PubMedCrossRefGoogle Scholar
  46. 46.
    Reid IR, Comish J (2004) Direct actions of leptin on bone remodeling. Calcif Tissue Int 74:313–316PubMedCrossRefGoogle Scholar
  47. 47.
    Thomas T, Burguera B, Melton LJ, Atkinson EJ, O′Fallon WM, Riggs BL, Khosla S (2001) Role of serum leptin and estrogen levels as potential mediators of the relationship between fat mass and bone mineral density in men versus women. Bone 29:114–120PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer 2009

Authors and Affiliations

  • Wagner Luiz do Prado
    • 1
  • Aline de Piano
    • 2
  • Marise Lazaretti-Castro
    • 2
  • Marco Túlio de Mello
    • 4
  • Sérgio Garcia Stella
    • 3
  • Sergio Tufik
    • 4
  • Cláudia Maria Oller do Nascimento
    • 2
  • Lila Missae Oyama
    • 2
  • Mara Cristina Lofrano
    • 2
  • Lian Tock
    • 2
  • Danielle Arisa Caranti
    • 2
  • Ana Raimunda Dâmaso
    • 5
  1. 1.Physical Education High SchoolPernambuco UniversityPernambucoBrazil
  2. 2.Nutrition Post-Graduation Program, Paulista Medicine SchoolSão Paulo Federal UniversitySão PauloBrazil
  3. 3.Universidade de Ribeirão Preto - UNAERPSão PauloBrazil
  4. 4.Department of Psychobiology, Paulista Medicine SchoolSão Paulo Federal UniversitySão PauloBrazil
  5. 5.Department of Biosciences, Paulista Medicine SchoolSão Paulo Federal UniversitySão PauloBrazil

Personalised recommendations