Journal of Bone and Mineral Metabolism

, Volume 27, Issue 5, pp 562–566

Bone mass effects of a Smad6 gene polymorphism in Japanese postmenopausal women

  • Tomohiko Urano
  • Masataka Shiraki
  • Takahiko Usui
  • Noriko Sasaki
  • Yasuyoshi Ouchi
  • Satoshi Inoue
Original Article
  • 96 Downloads

Abstract

Smad6 plays pivotal roles in the negative regulation of transforming growth factor β (TGFβ) family signaling as one of the feedback molecules. Here, we analyzed whether the human Smad6 gene is involved in the regulation of bone mass, using association analysis between bone mineral density (BMD) and single-nucleotide polymorphism (SNP) in the Smad6 gene. Association of an SNP at IVS3+26115A>C (intron 3, rs755451) in the Smad6 gene with BMD was examined in 721 Japanese postmenopausal Japanese women (age 65.2 ± 9.6 years; mean ± SD). The subjects bearing at least one variant C allele (CC ± AC; n = 387) had significantly lower Z-scores for total body and lumbar BMD than the subjects with no C allele (AA; n = 334) (total body, 0.23 ± 0.98 versus 0.50 ± 1.07; P = 0.0004; lumbar spine, −0.20 ± 1.38 versus 0.10 ± 1.48; P = 0.0050). These findings suggest that the Smad6 gene is a candidate for the genetic determinants of BMD in postmenopausal women, and this SNP could be useful as a genetic marker for predicting the risk of osteoporosis.

Keywords

Single-nucleotide polymorphism Osteoporosis Bone mineral density Smad6 Transforming growth factor β family 

References

  1. 1.
    Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767PubMedCrossRefGoogle Scholar
  2. 2.
    Flicker L, Hopper JL, Rodgers L, Kaymakci B, Green RM, Wark JD (1995) Bone density determinants in elderly women: a twin study. J Bone Miner Res 10:1607–1613PubMedGoogle Scholar
  3. 3.
    Smith DM, Nance WE, Kang KW, Christian JC, Johnston CC Jr (1973) Genetic factors in determining bone mass. J Clin Invest 52:2800–2808PubMedCrossRefGoogle Scholar
  4. 4.
    Young D, Hopper JL, Nowson CA, Green RM, Sherwin AJ, Kaymakci B, Smid M, Guest CS, Larkins RG, Wark JD (1995) Determinants of bone mass in 10- to 26-year-old females: a twin study. J Bone Miner Res 10:558–567PubMedGoogle Scholar
  5. 5.
    Nelson DA, Kleerekoper M (1997) The search for the osteoporosis gene. J Clin Endocrinol Metab 82:989–990PubMedCrossRefGoogle Scholar
  6. 6.
    Liu YZ, Liu YJ, Recker RR, Deng HW (2003) Molecular studies of identification of genes for osteoporosis: the 2002 update. J Endocrinol 177:147–196PubMedCrossRefGoogle Scholar
  7. 7.
    Morrison NA, Qi JC, Tokita A, Kelly PJ, Crofts L, Nguyen TV, Sambrook PN, Eisman JA (1994) Prediction of bone density from vitamin D receptor alleles. Nature 367:284–287PubMedCrossRefGoogle Scholar
  8. 8.
    Kobayashi S, Inoue S, Hosoi T, Ouchi Y, Shiraki M, Orimo H (1996) Association of bone mineral density with polymorphism of the estrogen receptor gene. J Bone Miner Res 11:306–311PubMedCrossRefGoogle Scholar
  9. 9.
    Uitterlinden AG, Burger H, Huang Q, Yue F, McGuigan FE, Grant SF, Hofman A, van Leeuwen JP, Pols HA, Ralston SH (1998) Relation of alleles of the collagen type I alpha1 gene to bone density and the risk of osteoporotic fractures in postmenopausal women. N Engl J Med 338:1016–1021PubMedCrossRefGoogle Scholar
  10. 10.
    Urano T, Shiraki M, Ezura Y, Fujita M, Sekine E, Hoshino S, Hosoi T, Orimo H, Emi M, Ouchi Y, Inoue S (2004) Association of a single-nucleotide polymorphism in low-density lipoprotein receptor-related protein 5 gene with bone mineral density. J Bone Miner Metab 22:341–345PubMedCrossRefGoogle Scholar
  11. 11.
    Mizuguchi T, Furuta I, Watanabe Y, Tsukamoto K, Tomita H, Tsujihata M, Ohta T, Kishino T, Matsumoto N, Minakami H, Niikawa N, Yoshiura K (2004) LRP5, low-density-lipoprotein-receptor-related protein 5, is a determinant for bone mineral density. J Hum Genet 49:80–86PubMedCrossRefGoogle Scholar
  12. 12.
    Richards JB, Rivadeneira F, Inouye M, Pastinen TM, Soranzo N, Wilson SG, Andrew T, Falchi M, Gwilliam R, Ahmadi KR, Valdes AM, Arp P, Whittaker P, Verlaan DJ, Jhamai M, Kumanduri V, Moorhouse M, van Meurs JB, Hofman A, Pols HA, Hart D, Zhai G, Kato BS, Mullin BH, Zhang F, Deloukas P, Uitterlinden AG, Spector TD (2008) Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371:1505–1512PubMedCrossRefGoogle Scholar
  13. 13.
    Roberts AB, Sporn MB (1993) Physiological actions and clinical applications of transforming growth factor-β (TGF-β). Growth Factors 8:1–9PubMedCrossRefGoogle Scholar
  14. 14.
    Whitman M (1998) Smads and early developmental signaling by the TGF-β superfamily. Genes Dev 12:2445–2462PubMedCrossRefGoogle Scholar
  15. 15.
    Yamada Y, Harada A, Hosoi T, Miyauchi A, Ikeda K, Ohta H, Shiraki M (2000) Association of transforming growth factor beta1 genotype with therapeutic response to active vitamin D for postmenopausal osteoporosis. J Bone Miner Res 15:415–420PubMedCrossRefGoogle Scholar
  16. 16.
    Bertoldo F, D’Agruma L, Furlan F, Colapietro F, Lorenzi MT, Maiorano N, Iolascon A, Zelante L, Locascio V, Gasparini P (2000) Transforming growth factor-β1 gene polymorphism, bone turnover, and bone mass in Italian postmenopausal women. J Bone Miner Res 15:634–639PubMedCrossRefGoogle Scholar
  17. 17.
    Yamada Y, Ando F, Niino N, Shimokata H (2001) Transforming growth factor-β1 gene polymorphism and bone mineral density. JAMA 285:167–168PubMedCrossRefGoogle Scholar
  18. 18.
    Styrkarsdottir U, Cazier JB, Kong A, Rolfsson O, Larsen H, Bjarnadottir E, Johannsdottir VD, Sigurdardottir MS, Bagger Y, Christiansen C, Reynisdottir I, Grant SF, Jonasson K, Frigge ML, Gulcher JR, Sigurdsson G, Stefansson K (2003) Linkage of osteoporosis to chromosome 20p12 and association to BMP2. PLoS Biol 1:E69PubMedCrossRefGoogle Scholar
  19. 19.
    Ramesh Babu L, Wilson SG, Dick IM, Islam FM, Devine A, Prince RL (2005) Bone mass effects of a BMP4 gene polymorphism in postmenopausal women. Bone 36:555–561PubMedCrossRefGoogle Scholar
  20. 20.
    Choi JY, Shin CS, Hong YC, Kang D (2006) Single-nucleotide polymorphisms and haplotypes of bone morphogenetic protein genes and peripheral bone mineral density in young Korean men and women. Calcif Tissue Int 78:203–211PubMedCrossRefGoogle Scholar
  21. 21.
    Medici M, van Meurs JB, Rivadeneira F, Zhao H, Arp PP, Hofman A, Pols HA, Uitterlinden AG (2006) BMP-2 gene polymorphisms and osteoporosis: the Rotterdam Study. J Bone Miner Res 21:845–854PubMedCrossRefGoogle Scholar
  22. 22.
    Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, Richardson MA, Topper JN, Gimbrone MA Jr, Wrana JL, Falb D (1997) The MAD-related protein Smad7 associates with the TGFβ receptor and functions as an antagonist of TGFβ signaling. Cell 89:1165–1173PubMedCrossRefGoogle Scholar
  23. 23.
    Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M, Miyazono K (1997) Smad6 inhibits signalling by the TGF-β superfamily. Nature 389:622–626PubMedCrossRefGoogle Scholar
  24. 24.
    Nakao A, Afrakhte M, Morén A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, ten Dijke P (1997) Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling. Nature 389:631–635PubMedCrossRefGoogle Scholar
  25. 25.
    Monteleone G, Kumberova A, Croft NM, McKenzie C, Steer HW, MacDonald TT (2001) Blocking Smad7 restores TGF-β1 signaling in chronic inflammatory bowel disease. J Clin Invest 108:601–609PubMedGoogle Scholar
  26. 26.
    Dong C, Zhu S, Wang T, Yoon W, Li Z, Alvarez RJ, ten Dijke P, White B, Wigley FM, Goldschmidt-Clermont PJ (2002) Deficient Smad7 expression: a putative molecular defect in scleroderma. Proc Natl Acad Sci USA 99:3908–3913PubMedCrossRefGoogle Scholar
  27. 27.
    Asano Y, Ihn H, Yamane K, Kubo M, Tamaki K (2004) Impaired Smad7-Smurf-mediated negative regulation of TGF-β signaling in scleroderma fibroblasts. J Clin Invest 113:253–264PubMedGoogle Scholar
  28. 28.
    Horiki M, Imamura T, Okamoto M, Hayashi M, Murai J, Myoui A, Ochi T, Miyazono K, Yoshikawa H, Tsumaki N (2004) Smad6/Smurf1 overexpression in cartilage delays chondrocyte hypertrophy and causes dwarfism with osteopenia. J Cell Biol 165:433–445PubMedCrossRefGoogle Scholar
  29. 29.
    Urano T, Shiraki M, Ouchi Y, Inoue S (2007) Association of a single nucleotide polymorphism in the steroid and xenobiotic receptor (SXR) gene (IVS1-579A/G) with bone mineral density. Geriatr Gerontol Int 7:104–109CrossRefGoogle Scholar
  30. 30.
    Simic P, Culej JB, Orlic I, Grgurevic L, Draca N, Spaventi R, Vukicevic S (2006) Systemically administered bone morphogenetic protein-6 restores bone in aged ovariectomized rats by increasing bone formation and suppressing bone resorption. J Biol Chem 281:25509–25521PubMedCrossRefGoogle Scholar
  31. 31.
    Chen D, Harris MA, Rossini G, Dunstan CR, Dallas SL, Feng JQ, Mundy GR, Harris SE (1997) Bone morphogenetic protein 2 (BMP-2) enhances BMP-3, BMP-4, and bone cell differentiation marker gene expression during the induction of mineralized bone matrix formation in cultures of fetal rat calvarial osteoblasts. Calcif Tissue Int 60:283–290PubMedCrossRefGoogle Scholar
  32. 32.
    Chen D, Ji X, Harris MA, Feng JQ, Karsenty G, Celeste AJ, Rosen V, Mundy GR, Harris SE (1998) Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J Cell Biol 142:295–305PubMedCrossRefGoogle Scholar
  33. 33.
    Zhao M, Harris SE, Horn D, Geng Z, Nishimura R, Mundy GR, Chen D (2002) Bone morphogenetic protein receptor signaling is necessary for normal murine postnatal bone formation. J Cell Biol 157:1049–1060PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer 2009

Authors and Affiliations

  • Tomohiko Urano
    • 1
    • 2
  • Masataka Shiraki
    • 3
  • Takahiko Usui
    • 1
    • 2
  • Noriko Sasaki
    • 1
    • 2
  • Yasuyoshi Ouchi
    • 1
  • Satoshi Inoue
    • 1
    • 2
    • 4
  1. 1.Department of Geriatric Medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
  2. 2.Department of Anti-Aging Medicine, Graduate School of MedicineUniversity of TokyoTokyoJapan
  3. 3.Research Institute and Practice for Involutional DiseasesNaganoJapan
  4. 4.Research Center for Genomic MedicineSaitama Medical SchoolSaitamaJapan

Personalised recommendations