Journal of Bone and Mineral Metabolism

, Volume 26, Issue 1, pp 60–65 | Cite as

An assessment of the use of quantitative ultrasound and the Osteoporosis Self-Assessment Tool for Asians in determining the risk of nonvertebral fracture in postmenopausal Chinese women

  • Bei Tao
  • Jian-min Liu
  • Xiao-ying Li
  • Ji-guang Wang
  • Wei-qing Wang
  • Guang Ning
ORIGINAL ARTICLE

Abstract

This cross-sectional study aims to assess the effectiveness of a simple, noninvasive scoring system, the Osteoporosis Self-Assessment Tool for Asians (OSTA), and quantitative bone ultrasound (QUS) in assessing nonvertebral fracture risk in Chinese postmenopausal women. A group of 513 community-dwelling women including 271 postmenopausal individuals participated in this study. Speed of sound (SOS m/s) at the radius, phalanx, and tibia were assessed by using the Omnisense prototype (Sunlight Ltd., Israel). Body height and weight were measured, and body mass index (BMI) and OSTA indices were calculated. Self-reported fractures were identified using a structured questionnaire. Phalanx SOS was significantly lower among postmenopausal women with a history of nonvertebral fracture occurred after menopause than those without (3755 m/s vs. 3841 m/s, P = 0.017, adjusted for age and weight), with an AUC of 0.66. The AUC of the OSTA for predicting nonvertebral fracture occurred after menopause was 0.64. SOS at the radius, phalanx, and tibia showed a positive correlation with OSTA index (r = 0.376–0.401, P < 0.001). The prevalence of nonvertebral fractures also increased significantly with the decreasing order of OSTA index (χ2 = 5.432, P = 0.02). The OSTA values of ≤−1 and phalanx QUS T-score of ≤−1.95 can differentiate postmenopausal nonvertebral fracture with sensitivity of 75% and 81%, respectively, and specificity of 48% and 40%, respectively. Combining OSTA and phalanx QUS yielded a sensitivity of 83% and a specificity of 84% to detect postmenopausal nonvertebral fracture, with an AUC of 0.64. We conclude that OSTA and phalanx QUS are simple and effective clinical tools for identifying postmenopausal women at increased risk of nonvertebral fractures and can thereby facilitate the appropriate and more cost-effective use of bone densitometry to prevent osteoporotic fractures in developing countries.

Key words

bone density fracture OSTA speed of sound quantitative ultrasound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    NIH2000Osteoporosis prevention, diagnosis, and therapyNIH Consensus Statement17145Google Scholar
  2. 2.
    Wainwright, SA, Marshall, LM, Ensrud, KE, Cauley, JA, Black, DM, Hillier, TA, Hochberg, MC, Vogt, MT, Orwoll, ES 2005Study of Osteoporotic Fractures Research Group. Hip fracture in women without osteoporosisJ Clin Endocrinol Metab9027872793PubMedCrossRefGoogle Scholar
  3. 3.
    Hans, D, Arlot, ME, Schott, AM, Roux, JP, Kotzki, PO, Meunier, PJ 1995Do ultrasound measurements on the os calcis reflect more the bone microarchitecture than the bone mass? A two-dimensional histomorphometric studyBone (NY)16295300Google Scholar
  4. 4.
    Njeh, CF, Hans, D, Li, J, Fan, B, Fuerst, T, He, YQ, Tsuda-Futami, E, Lu, Y, Wu, CY, Genant, HK 2000Comparison of six calcaneal quantitative ultrasound devices: precision and hip fracture discriminationOsteoporos Int1110511062PubMedCrossRefGoogle Scholar
  5. 5.
    Hartl, F, Tyndall, A, Kraenzlin, M, Bachmeier, C, Guckel, C, Senn, U, Hans, D, Theiler, R 2002Discriminatory ability of quantitative ultrasound parameters and bone mineral density in a population-based sample of postmenopausal women with vertebral fractures: results of the Basel Osteoporosis StudyJ Bone Miner Res17321330PubMedCrossRefGoogle Scholar
  6. 6.
    Bossy, E, Talmant, M, Peyrin, F, Akrout, L, Cloetens, P, Laugier, P 2004An in vitro study of the ultrasonic axial transmission technique at the radius: 1-MHz velocity measurements are sensitive to both mineralization and intracortical porosityJ Bone Miner Res1915481556PubMedCrossRefGoogle Scholar
  7. 7.
    Knapp, KM, Blake, GM, Fogelman, I, Doyle, DV, Spector, TD 2002Multisite quantitative ultrasound: colles fracture discrimination in postmenopausal womenOsteoporos Int13474479PubMedCrossRefGoogle Scholar
  8. 8.
    Hans, D, Srivastav, SK, Singal, C, Barkmann, R, Njeh, CF, Kantorovich, E, Gluer, CC, Genant, HK 1999Does combining the results from multiple bone sites measured by a new quantitative ultrasound device improve discrimination of hip fracture?J Bone Miner Res14644651PubMedCrossRefGoogle Scholar
  9. 9.
    Burger, H, van Daele, PLA, Algra, D, van den Ouweland, FA, Grobbee, DE, Hofman, A, van Kuijk, C, Schutte, HE, Birkenhager, JC, Pols, HA 1994The association between age and bone mineral density in men and women aged 55 years and over: the Rotterdam StudyJ Bone Miner Res25113Google Scholar
  10. 10.
    Edelstein, SL, Barett-Connor, E 1993Relation between body size and bone mineral density in elderly men and womenAm J Epidemiol138160169PubMedGoogle Scholar
  11. 11.
    Hannan, MT, Felson, DT, Anderson, JJ 1992Bone mineral density in elderly men and women: results from the Framingham Osteoporosis StudyJ Bone Miner Res7547553PubMedCrossRefGoogle Scholar
  12. 12.
    Nguyen, TV, Center, JR, Pocock, NA, Eisman, JA 2004Limited utility of clinical indices for the prediction of symptomatic fracture risk in postmenopausal womenOsteoporos Int154955PubMedCrossRefGoogle Scholar
  13. 13.
    Koh, LK, Sedrine, WB, Torralba, TP, Kung, A, Fujiwara, S, Chan, SP, Huang, QR, Rajatanavin, R, Tsai, KS, Park, HM, Reginster, JY 2001Osteoporosis Self-Assessment Tool for Asians (OSTA) Research Group. A simple tool to identify Asian women at increased risk of osteoporosisOsteoporos Int12699705PubMedCrossRefGoogle Scholar
  14. 14.
    Geusens, PP, Hochberg, MC, van der Voort, DJ, Pols, H, Van Der Klift, M, Siris, E, Melton, ME, Turpin, J, Byrnes, C, Ross, P 2002Performance of risk indices for identifying low bone density in postmenopausal womenMayo Clinic Proc77629637CrossRefGoogle Scholar
  15. 15.
    Cadarette, SM, McIsaac, WJ, Hawker, GA, Jaakkimainen, L, Culbert, A, Zarifa, G, Ola, E, Jaglal, SB 2004The validity of decision rules for selecting women with primary osteoporosis for bone mineral density testingOsteoporos Int15361366PubMedCrossRefGoogle Scholar
  16. 16.
    Richy, F, Gourlay, M, Ross, PD, Sen, SS, Radican, L, De Ceulaer, F, Ben Sedrine, W, Ethgen, O, Bruyere, O, Reginster, JY 2004Validation and comparative evaluation of the osteoporosis self-assessment tool (OST) in a Caucasian population from BelgiumQ J Med973946Google Scholar
  17. 17.
    Cummings, SR, Melton, LJ 2002Epidemiology and outcomes of osteoporosis fracturesLancet35917611767PubMedCrossRefGoogle Scholar
  18. 18.
    Center, JR, Nguyen, TV, Schneider, D, Sambrook, PN, Eisman, JA 1999Mortality after all major types of osteoporotic fracture in men and women: an observational studyLancet353878882PubMedCrossRefGoogle Scholar
  19. 19.
    Lewiecki, EM 2005Clinical applications of bone density testing for osteoporosisMinerva Med96317330PubMedGoogle Scholar
  20. 20.
    Wehren, LE, Siris, ES 2004Beyond bone mineral density: can existing clinical risk assessment instruments identify women at increased risk of osteoporosis?J Intern Med256375380PubMedCrossRefGoogle Scholar
  21. 21.
    Alenfeld, FE, Wuster, C, Funck, C, Pereira-Lima, JF, Fritz, T, Meeder, PJ, Ziegler, R 1998Ultrasound measurements at the proximal phalanges in healthy women and patients with hip fracturesOsteoporos Int8393398PubMedCrossRefGoogle Scholar
  22. 22.
    Guglielmi, G, Cammisa, M, De Serio, A, Scillitani, A, Chiodini, I, Carnevale, V, Fusilli, S 1999Phalangeal US velocity discriminates between normal and vertebrally fractured subjectsEur Radiol916321637PubMedCrossRefGoogle Scholar
  23. 23.
    Joly, J, Westhovens, R, Borghs, H, Peeters, H, Tirry, J, Nijs, J, Dequeker, J 1999Reference curve and diagnostic sensitivity for a new ultrasound device for the phalanges, the DBM Sonic 1200, in Belgian womenOsteoporos Int9284289PubMedCrossRefGoogle Scholar
  24. 24.
    Reginster, JY, Dethor, M, Pirenne, H, Dewe, W, Albert, A 1998Reproducibility and diagnostic sensitivity of ultrasonometry of the phalanges to assess osteoporosisInt J Gynecol Obstet632128CrossRefGoogle Scholar
  25. 25.
    Wuster, C, Albanese, C, De Aloysio, D, Duboeuf, F, Gambacciani, M, Gonnelli, S, Gluer, CC, Hans, D, Joly, J, Reginster, JY, De Terlizzi, F, Cadossi, R 2000Phalangeal osteosonogrammetry study: age-related changes, diagnostic sensitivity, and discrimination power. The Phalangeal Osteosonogrammetry Study GroupJ Bone Miner Res1516031614PubMedCrossRefGoogle Scholar
  26. 26.
    Giardino, R, Rotini, R, Noia, F, Veronesi, CA, Carpi, A, Nicolini, A, de Terlizzi, F, Fini, M, Giavaresi, G 2002Phalangeal ultrasonography in forearm fracture discriminationBiomed Pharmacother56332338PubMedCrossRefGoogle Scholar
  27. 27.
    Ruff, CB, Hayes, WC 1988Sex differences in age-related remodeling of the femur and tibiaJ Orthop Res6886896PubMedCrossRefGoogle Scholar
  28. 28.
    Prevrhal, S, Fuerst, T, Fan, B, Njeh, C, Hans, D, Uffmann, M, Srivastav, S, Genant, HK 2001Quantitative ultrasound of the tibia depends on both cortical density and thicknessOsteoporos Int122834PubMedCrossRefGoogle Scholar
  29. 29.
    Diab, T, Condon, KW, Burr, DB, Vashishth, D 2006Age-related change in the damage morphology of human cortical bone and its role in bone fragilityBone (NY)38427431Google Scholar
  30. 30.
    Hsu, ES, Patwardhan, AG, Meade, KP, Light, TR, Martin, WR 1993Cross-sectional geometrical properties and bone mineral contents of the human radius and ulnaJ Biomech2613071318PubMedCrossRefGoogle Scholar
  31. 31.
    Louis, O, Willnecker, J, Soykens, S, Van den Winkel, P, Osteaux, M 1995Cortical thickness assessed by peripheral quantitative computed tomography: accuracy evaluated on radius specimensOsteoporos Int5446449PubMedCrossRefGoogle Scholar
  32. 32.
    Marin, F, Gonzalez-Macias, J, Diez-Perez, A, Palma, S, Delgado-Rodriguez, M 2006Relationship between bone quantitative ultrasound and fractures: a meta-analysisJ Bone Miner Res2111261135PubMedCrossRefGoogle Scholar
  33. 33.
    Fujiwara, S, Sone, T, Yamazaki, K, Nakatsuka, K, Masunari, N, Fujita, S, Kushida, K, Fukunaga, M 2005Heel bone ultrasound predicts non-spine fracture in Japanese men and womenOsteoporos Int1621072112PubMedCrossRefGoogle Scholar
  34. 34.
    Maggi, S Naole, M Giannini, S Adami, S Defeo, D Isaia, G Sinigaglia, L Filipponi, P Crepaldi, G ESOPO Study Group2006Quantitative heel ultrasound in a population-based study in Italy and its relationship with fracture history: the ESOPO studyOsteoporos Int17237244PubMedCrossRefGoogle Scholar
  35. 35.
    Hernandez, JL Marin, F Gonzalez-Macias, J Diez-Perez, A Vila, J Gimenez, S Galan, B Arenas, MS Suarez, F Gayola, L Guillen, G Sagredo, T Belenguer, R Moron, A Arriaza, E ECOSAP study investigators2004Discriminative capacity of calcaneal quantitative ultrasound and of osteoporosis and fracture risk factors in postmenopausal women with osteoporotic fracturesCalcif Tissue Int74357365PubMedCrossRefGoogle Scholar
  36. 36.
    Hayak, S, Olkin, I, Liu, H, Grabe, M, Gould, MK, Allen, IE, Owens, DK, Bravata, DM 2006Mata-analysis: accuracy of quantitative ultrasound for identifying patients with osteoporosisAnn Intern Med144832841Google Scholar
  37. 37.
    Kung, AW, Ho, AY, Sedrine, WB, Reginster, JY, Ross, PD 2003Comparison of a simple clinical risk index and quantitative bone ultrasound for identifying women at increased risk of osteoporosisOsteoporos Int14716721PubMedCrossRefGoogle Scholar
  38. 38.
    Kung, AW, Ho, AY, Ross, PD, Reginster, JY 2005Development of a clinical assessment tool in identifying Asian men with low bone mineral density and comparison of its usefulness to quantitative bone ultrasoundOsteoporos Int16849855PubMedCrossRefGoogle Scholar
  39. 39.
    Cook, RB, Collins, D, Tucker, J, Zioupos, P 2005Comparison of questionnaire and quantitative ultrasound techniques as screening tools for DXAOsteoporos Int1615651575PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 2008

Authors and Affiliations

  • Bei Tao
    • 1
  • Jian-min Liu
    • 1
  • Xiao-ying Li
    • 1
  • Ji-guang Wang
    • 2
  • Wei-qing Wang
    • 1
  • Guang Ning
    • 1
  1. 1.Department of Endocrine and Metabolic Diseases, Shanghai Rui-jin HospitalJiaotong University, School of MedicineShanghaiChina
  2. 2.Institute of HypertensionShanghaiChina

Personalised recommendations